UNS: Improving Energy Density of Layered Vanadium Pentoxide Nanostructure for Aqueous Electrochemical Energy Storage
UNS:提高用于水相电化学储能的层状五氧化二钒纳米结构的能量密度
基本信息
- 批准号:1511014
- 负责人:
- 金额:$ 27.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Teng, 1511014Adoption of renewable non-carbon-emitting energy offers the potential to reduce dependence on petroleum and significantly reduce greenhouse gas emissions. Renewable sun and wind energy sources generally have on-peak and off-peak load variations. To provide clean and efficient energy solutions, the development of electrochemical energy storage (EES) devices can accelerate the adoption of renewable energy generation sources. Thus, electricity generated during off-peak hours can be stored efficiently and economically for use during peak demand. Such devices need to have high energy density (defined as the amount of energy stored in a given system or region of space per unit volume or mass) to be economically viable. Electrochemical reactions release the energy in such materials. The PI plans to develop electrochemical capacitors (ECs), often called supercapacitors, with high enough energy density to be used as EES devices.Intellectual Merit: Means to increase the energy density of ECs include the design of layered nanomaterials to shorten diffusion distance of ionic transport, and the utilization of mono- and bi-valence charge carriers (e.g., Na+ and Mg2+) for EES instead of lithium-ion to increase the ionic conductance and storage capacity. The proposed project will investigate the charge-storage mechanism of vanadium pentoxide (V2O5) and silver doped V2O5 (Agx-V2O5; X: 0.1, 0.5 and 1) layered nano structures as electrode materials for (ECs) in various aqueous electrolytes containing mono- and bi-valence cations such as Na+ and Mg2+. Results obtained from material syntheses, structural and functional characterizations, and in situ/ex situ synchrotron/neutron measurements will provide fundamental understanding of the factors that influence of Na+ and Mg2+ storage inside the V2O5 and Agx-V2O5 nanolayers, and help design new types of layered nanostructures with tailored thickness and interplanar distance to enhance energy storage capacity while retaining high power performance in an EC device. The hypotheses are: (i) Ag dopant will improve the electrical conductivity of V2O5; (ii) tailored thickness and interplanar distance of V2O5 and Agx-V2O5 nanolayers will facilitate ionic transport; (iii) Na+ and Mg2+ ions have higher ionic conductivity in water than Li+. Particularly, bi-valence Mg2+ will further improve the capacitance of the EES devices by bringing more charge transfer upon same amount of ionic transport. To validate the hypotheses, the PI will: (i) synthesize and characterize V2O5 and Agx-V2O5 layered nano materials with controlled composition, thickness and interplanar distance; and (ii) perform the electrochemical measurements and electro-kinetic studies in half-cells and button-cells.Broader Impact: Success with the proposed research could result in a new type of ECs that could outshine batteries and electrostatic capacitors, and could favorably impact the energy sector. The project will integrate educational programs dedicated to the cross-disciplinary training of students at their home institution and national laboratories via established collaborations and summer research programs. The educational goals of the proposed research are to create a research platform at the home institute for training graduate and undergraduate students as well as high school teachers on the fundamental study of energy research, and to developlearning materials for high school science and engineering education. The PI will mentor high school chemistry teachers to participate in three-week summer research in the PI?s lab, so that quality instructional materials based on the summer research can be combined to enhance STEM curriculum and education.
Teng,1511014采用可再生的非碳排放能源有可能减少对石油的依赖,并显著减少温室气体排放。可再生的太阳能和风能通常有峰期和非峰期的负荷变化。为了提供清洁和高效的能源解决方案,电化学储能(EES)装置的开发可以加速可再生能源的采用。因此,在非高峰时段产生的电力可以被有效和经济地储存起来,以供在高峰需求时使用。这类设备需要具有较高的能量密度(定义为单位体积或质量在给定系统或空间区域中存储的能量)才能在经济上可行。电化学反应释放出这种材料中的能量。PI计划开发具有足够高能量密度的电化学电容器(ECs),通常称为超级电容器。智能优点:提高ECs能量密度的方法包括设计层状纳米材料以缩短离子传输的扩散距离,以及利用一价和二价电荷载流子(例如Na+和Mg2+)代替锂离子来增加EES的离子电导和存储容量。该项目将研究五氧化二钒(V2O5)和银掺杂V2O5(Agx-V2O5;X:0.1、0.5和1)层状纳米结构作为电极材料在各种含有一价和二价阳离子(如Na+和Mg2+)的水溶液中的电荷储存机理。材料合成、结构和功能表征以及原位/非原位同步加速器/中子测量获得的结果将使人们从根本上了解影响V2O5和Agx-V2O5纳米层中Na+和Mg2+存储的因素,并帮助设计具有定制厚度和面间距离的新型层状纳米结构,以在保持EC器件高功率性能的同时提高能量存储能力。这些假设是:(I)Ag掺杂将改善V2O5的电导率;(Ii)V2O5和Agx-V2O5纳米层的厚度和晶面间距有利于离子的传输;(Iii)Na+和Mg2+离子在水中的离子电导率高于Li+。特别是,二价镁离子将通过在相同离子输运的情况下带来更多的电荷转移来进一步提高EES器件的电容。为了验证假设,PI将:(I)合成和表征成分、厚度和晶面间距可控的V2O5和Agx-V2O5层状纳米材料;(Ii)在半电池和纽扣电池中进行电化学测量和电动研究。广泛的影响:拟议的研究成功可能导致一种新型的ECS,它可以超越电池和静电电容器,并可能有利地影响能源领域。该项目将通过既定的合作和暑期研究项目,整合致力于在本国机构和国家实验室对学生进行跨学科培训的教育项目。拟议研究的教育目标是在国内研究所建立一个研究平台,培训研究生和本科生以及高中教师进行能源研究的基础研究,并为高中科学和工程教育开发开放的教材。PI将指导高中化学教师在Pi?S实验室参加为期三周的暑期研究,以便将基于暑期研究的优质教学材料结合起来,加强STEM课程和教育。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaowei Teng其他文献
Vanadium Pentoxide (V2O5) Electrode for Aqueous Energy Storage: Understand Ionic Transport using Electrochemical, XRay, and Computational Tools
用于水相储能的五氧化二钒 (V2O5) 电极:使用电化学、X 射线和计算工具了解离子输运
- DOI:
10.5772/62759 - 发表时间:
2016 - 期刊:
- 影响因子:4.6
- 作者:
Daniel S. Charles;Xiaowei Teng - 通讯作者:
Xiaowei Teng
<em>In vitro</em> metabolism of rebaudioside E under anaerobic conditions: Comparison with rebaudioside A
- DOI:
10.1016/j.yrtph.2015.05.019 - 发表时间:
2015-08-01 - 期刊:
- 影响因子:
- 作者:
Sidd Purkayastha;Sachin Bhusari;George Pugh;Xiaowei Teng;David Kwok;Stanley M. Tarka - 通讯作者:
Stanley M. Tarka
Electrode and Electrolyte Interaction in Aqueous Electrochemical Energy Storage
- DOI:
10.1002/9781119951438.eibc2682 - 发表时间:
2019-03 - 期刊:
- 影响因子:0
- 作者:
Xiaowei Teng - 通讯作者:
Xiaowei Teng
Xiaowei Teng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaowei Teng', 18)}}的其他基金
Collaborative Research: Selective Extraction of Lithium from Seawater using Structurally Modified Metal Oxide Layered Materials
合作研究:使用结构改性金属氧化物层状材料从海水中选择性提取锂
- 批准号:
2227164 - 财政年份:2023
- 资助金额:
$ 27.08万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Materials Chemistry to Engage Anion Uptake and Release in Layered Transition Metal Oxides and Hydroxides
合作研究:了解层状过渡金属氧化物和氢氧化物中阴离子吸收和释放的材料化学
- 批准号:
2236704 - 财政年份:2022
- 资助金额:
$ 27.08万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding the Materials Chemistry to Engage Anion Uptake and Release in Layered Transition Metal Oxides and Hydroxides
合作研究:了解层状过渡金属氧化物和氢氧化物中阴离子吸收和释放的材料化学
- 批准号:
2216047 - 财政年份:2022
- 资助金额:
$ 27.08万 - 项目类别:
Continuing Grant
EAGER: CAS-Climate: Revitalizing Iron Hydroxide Electrode for Energy-Efficient Green Batteries by Promoting Ferrous- and Ferric- Hydroxides Redox
EAGER:CAS-Climate:通过促进亚铁和氢氧化铁的氧化还原,使节能绿色电池的氢氧化铁电极焕发活力
- 批准号:
2222928 - 财政年份:2022
- 资助金额:
$ 27.08万 - 项目类别:
Standard Grant
PFI-TT: Development of Prototype Aqueous Energy Storage Device using Nanomaterials
PFI-TT:使用纳米材料开发原型水储能装置
- 批准号:
1827554 - 财政年份:2018
- 资助金额:
$ 27.08万 - 项目类别:
Standard Grant
EPRI: Collaborative Research: Hydrogen Production via Electrochemical Reforming of Ethanol in a Proton Exchange Membrane Cell
EPRI:合作研究:在质子交换膜电池中通过乙醇电化学重整生产氢气
- 批准号:
1705633 - 财政年份:2017
- 资助金额:
$ 27.08万 - 项目类别:
Standard Grant
Binary Palladium-Based Anode Catalysts for the Ethanol Oxidation Reaction in an Alkaline Medium
用于碱性介质中乙醇氧化反应的二元钯基阳极催化剂
- 批准号:
1152771 - 财政年份:2012
- 资助金额:
$ 27.08万 - 项目类别:
Standard Grant
Iridium-Based Alloys as Alternative Catalysts for Ethanol Oxidation Fuel Cell Reactions: Experimental and First Principles-based Investigation
铱基合金作为乙醇氧化燃料电池反应的替代催化剂:实验和基于第一原理的研究
- 批准号:
1159662 - 财政年份:2012
- 资助金额:
$ 27.08万 - 项目类别:
Standard Grant
相似国自然基金
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Improving Access and Outcomes for Students in Semiconductors and Solar Energy
改善半导体和太阳能专业学生的入学机会和成果
- 批准号:
2325694 - 财政年份:2023
- 资助金额:
$ 27.08万 - 项目类别:
Standard Grant
Improving metal hydrides to diversify energy storage and transportation
改进金属氢化物使能源储存和运输多样化
- 批准号:
22KF0307 - 财政年份:2023
- 资助金额:
$ 27.08万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Improving the efficiency of light to kinetic energy conversion by pulse shaping of laser pulses that generate bubbles.
通过对产生气泡的激光脉冲进行脉冲整形,提高光到动能的转换效率。
- 批准号:
23K03279 - 财政年份:2023
- 资助金额:
$ 27.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: NNA Incubator: Improving Culturally Sensitive Energy Strategies in the Arctic Residential Buildings with the Co-Production of Knowledge Framework
合作研究:NNA 孵化器:通过共同制作知识框架改善北极住宅建筑的文化敏感能源战略
- 批准号:
2318394 - 财政年份:2023
- 资助金额:
$ 27.08万 - 项目类别:
Standard Grant
SBIR Phase II: Improving fleet operational metrics through service optimization with automated learning of vehicle energy performance models for zero-emission public transport
SBIR 第二阶段:通过服务优化和自动学习零排放公共交通的车辆能源性能模型来改善车队运营指标
- 批准号:
2220811 - 财政年份:2023
- 资助金额:
$ 27.08万 - 项目类别:
Cooperative Agreement
Improving Affordability and Reliability of Energy Access in Uganda with River Turbines
利用水轮机提高乌干达能源获取的可承受性和可靠性
- 批准号:
10040896 - 财政年份:2023
- 资助金额:
$ 27.08万 - 项目类别:
Feasibility Studies
Gas hydrate energy storage systems by improving heat and mass transfer at the dissociation catalyst interface
通过改善解离催化剂界面处的传热和传质的天然气水合物储能系统
- 批准号:
23H01902 - 财政年份:2023
- 资助金额:
$ 27.08万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Understanding the role of water molecule diffusion in nanoscale heat transfer for improving thermal energy output of thermochemical heat storage material
了解水分子扩散在纳米级传热中的作用,以提高热化学储热材料的热能输出
- 批准号:
23K13818 - 财政年份:2023
- 资助金额:
$ 27.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: NNA Incubator: Improving Culturally Sensitive Energy Strategies in the Arctic Residential Buildings with the Co-Production of Knowledge Framework
合作研究:NNA 孵化器:通过共同制作知识框架改善北极住宅建筑的文化敏感能源战略
- 批准号:
2318393 - 财政年份:2023
- 资助金额:
$ 27.08万 - 项目类别:
Standard Grant
PFI-RP: Low-Friction Durable Coatings for Improving Energy Efficiency in Conveyor Systems
PFI-RP:低摩擦耐用涂层,可提高输送系统的能源效率
- 批准号:
2141026 - 财政年份:2022
- 资助金额:
$ 27.08万 - 项目类别:
Standard Grant