Collaborative Research: Understanding the Materials Chemistry to Engage Anion Uptake and Release in Layered Transition Metal Oxides and Hydroxides

合作研究:了解层状过渡金属氧化物和氢氧化物中阴离子吸收和释放的材料化学

基本信息

  • 批准号:
    2236704
  • 负责人:
  • 金额:
    $ 35.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Non-Technical SummaryLayered transition metal oxide and hydroxide materials capable of hosting anions could have many energy- and environment-related applications. However, most metal oxides and hydroxides cannot reversibly uptake and release anions, limiting their sustainable applications in various devices. In this project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research, the research team aims to understand how chloride and sulfate anions move in the layered materials and develop a library of layered transition metal oxide and hydroxide materials for reversible anion uptake and release. Atomic-scale modeling and quantum theory are used to build a property database of layered oxides, and gain fundamental insights into atomic interactions between anion and layered materials. The close integration of theory and experiment helps determine the underlying mechanisms of the anion insertion and extraction in the interlayer region of the host materials and to establish the fundamental roles of material local structures, anion, and water molecules for reversible hosting of chloride and sulfate into layered metal hydroxides. This project enhances education and outreach efforts by the research team to increase scientific engagement and participation from underrepresented groups through a range of activities aimed at the general public, high school students and teachers, undergraduate students, and graduate students.Technical SummaryLayered double hydroxides (LDHs) have two-dimensional positively charged nanosheets and host negatively charged ions and structural water molecules in the interlayer regions, offering advantages in a wide range of energy- and environment-related applications, including multivalent anion batteries, high-capacity desalination, and ion remediation. However, there is a lack of fundamental understanding of how the local structure and their atomic interaction with anions affect the reversible anion uptake and release in LDHs. In this project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research, the research team aims to understand the interplay between ion-hydration, atomic transport, material defect, and charge transfer on anion insertion and extraction in transition metal oxide and hydroxide layered materials. The team proposes to synthesize Fe- and Co-based LDH, [M2+1-x(M/Ni)3+x(HO−)2]x+ [(An−)n/2 · yH2O]x- (M: Fe, Co; A: inserted anion groups such as Cl- and SO42-,), where Ni3+-doping immobilizes the structural water in the interlayers and stabilizes the interlayer structure. The team plans to optimize LDH local structures (e.g., disorder and site defect) and long-range structure (e.g., interlayer distance, crystalline phase), guided by atomic modeling, to assist the anion uptake and release. The team plans to use neutron/X-ray total scattering and pair distribution function analysis and X-ray absorption spectroscopy to study how metal-oxygen (M-O) octahedra of LDHs interact with anions, water, and cation. The density functional theory calculations, advanced sampling, and molecular dynamics simulations are used to gain atomic-scale insights into interactions between M-O octahedra in the proposed LDHs, anions, and water, providing guidelines for experimentally tuning the interfacial structuring of the LDHs. The interwoven nature between the experimental and modeling efforts provides better-resolved structural details via experiments and simulations informing each other. The education and outreach efforts advance the team's goals to increase participation of students from underrepresented groups via an undergraduate researcher exchange program, hands-on activities for high school students and teachers, and advanced research training experiences for undergraduate and graduate students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
能够承载阴离子的层状过渡金属氧化物和氢氧化物材料具有许多与能源和环境相关的应用。然而,大多数金属氧化物和氢氧化物不能可逆地吸收和释放阴离子,限制了它们在各种设备中的可持续应用。在该项目中,由材料研究部固态与材料化学项目支持,研究团队旨在了解氯离子和硫酸盐阴离子如何在层状材料中移动,并开发层状过渡金属氧化物和氢氧化物材料库,用于可逆阴离子的吸收和释放。利用原子尺度模型和量子理论建立了层状氧化物的性质数据库,并获得了阴离子与层状材料之间原子相互作用的基本见解。理论和实验的紧密结合有助于确定负离子在寄主材料层间区域插入和提取的潜在机制,并建立材料局部结构、阴离子和水分子在氯离子和硫酸盐可逆寄存到层状金属氢氧化物中的基本作用。该项目加强了研究团队的教育和推广工作,通过一系列针对普通公众、高中学生和教师、本科生和研究生的活动,增加代表性不足群体的科学参与和参与。层状双氢氧化物(LDHs)具有二维带正电的纳米片和带负电的离子以及层间区域的结构水分子,在广泛的能源和环境相关应用中具有优势,包括多价阴离子电池、高容量海水淡化和离子修复。然而,对于局部结构及其与阴离子的原子相互作用如何影响LDHs中可逆阴离子的摄取和释放,缺乏基本的理解。该项目由材料研究部固态与材料化学项目支持,研究团队旨在了解过渡金属氧化物和氢氧化物层状材料中阴离子插入和提取过程中离子水合作用、原子输运、材料缺陷和电荷转移之间的相互作用。该团队提出合成Fe-和Co-基LDH, [M2+1-x(M/Ni)3+x(HO−)2]x+ [(An−)n/2·yH2O]x- (M: Fe, Co; A:插入阴离子基团如Cl-和SO42-),其中Ni3+掺杂固定了层间结构水并稳定了层间结构。该团队计划在原子建模的指导下,优化LDH的局部结构(例如,无序和位点缺陷)和远程结构(例如,层间距离,晶相),以协助阴离子的摄取和释放。该团队计划使用中子/ x射线全散射和对分布函数分析以及x射线吸收光谱来研究LDHs的金属-氧(M-O)八面体如何与阴离子、水和阳离子相互作用。密度泛函数理论计算,先进的采样和分子动力学模拟被用来获得原子尺度的见解之间的相互作用的M-O八面体在提出的LDHs,阴离子和水,为实验调整LDHs的界面结构提供指导。实验和建模工作之间的交织性质通过实验和模拟相互通知,提供了更好地解决结构细节。通过本科生研究人员交流项目、高中学生和教师的实践活动以及本科生和研究生的高级研究培训经验,教育和推广工作促进了团队的目标,即增加代表性不足群体学生的参与。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaowei Teng其他文献

Vanadium Pentoxide (V2O5) Electrode for Aqueous Energy Storage: Understand Ionic Transport using Electrochemical, XRay, and Computational Tools
用于水相储能的五氧化二钒 (V2O5) 电极:使用电化学、X 射线和计算工具了解离子输运
  • DOI:
    10.5772/62759
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Daniel S. Charles;Xiaowei Teng
  • 通讯作者:
    Xiaowei Teng
<em>In vitro</em> metabolism of rebaudioside E under anaerobic conditions: Comparison with rebaudioside A
  • DOI:
    10.1016/j.yrtph.2015.05.019
  • 发表时间:
    2015-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sidd Purkayastha;Sachin Bhusari;George Pugh;Xiaowei Teng;David Kwok;Stanley M. Tarka
  • 通讯作者:
    Stanley M. Tarka
Electrode and Electrolyte Interaction in Aqueous Electrochemical Energy Storage

Xiaowei Teng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaowei Teng', 18)}}的其他基金

Collaborative Research: Selective Extraction of Lithium from Seawater using Structurally Modified Metal Oxide Layered Materials
合作研究:使用结构改性金属氧化物层状材料从海水中选择性提取锂
  • 批准号:
    2227164
  • 财政年份:
    2023
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
EAGER: CAS-Climate: Revitalizing Iron Hydroxide Electrode for Energy-Efficient Green Batteries by Promoting Ferrous- and Ferric- Hydroxides Redox
EAGER:CAS-Climate:通过促进亚铁和氢氧化铁的氧化还原,使节能绿色电池的氢氧化铁电极焕发活力
  • 批准号:
    2222928
  • 财政年份:
    2022
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the Materials Chemistry to Engage Anion Uptake and Release in Layered Transition Metal Oxides and Hydroxides
合作研究:了解层状过渡金属氧化物和氢氧化物中阴离子吸收和释放的材料化学
  • 批准号:
    2216047
  • 财政年份:
    2022
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Continuing Grant
PFI-TT: Development of Prototype Aqueous Energy Storage Device using Nanomaterials
PFI-TT:使用纳米材料开发原型水储能装置
  • 批准号:
    1827554
  • 财政年份:
    2018
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
EPRI: Collaborative Research: Hydrogen Production via Electrochemical Reforming of Ethanol in a Proton Exchange Membrane Cell
EPRI:合作研究:在质子交换膜电池中通过乙醇电化学重整生产氢气
  • 批准号:
    1705633
  • 财政年份:
    2017
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
UNS: Improving Energy Density of Layered Vanadium Pentoxide Nanostructure for Aqueous Electrochemical Energy Storage
UNS:提高用于水相电化学储能的层状五氧化二钒纳米结构的能量密度
  • 批准号:
    1511014
  • 财政年份:
    2015
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
Binary Palladium-Based Anode Catalysts for the Ethanol Oxidation Reaction in an Alkaline Medium
用于碱性介质中乙醇氧化反应的二元钯基阳极催化剂
  • 批准号:
    1152771
  • 财政年份:
    2012
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
Iridium-Based Alloys as Alternative Catalysts for Ethanol Oxidation Fuel Cell Reactions: Experimental and First Principles-based Investigation
铱基合金作为乙醇氧化燃料电池反应的替代催化剂:实验和基于第一原理的研究
  • 批准号:
    1159662
  • 财政年份:
    2012
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
  • 批准号:
    2318940
  • 财政年份:
    2024
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
  • 批准号:
    2331729
  • 财政年份:
    2024
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342025
  • 财政年份:
    2024
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
  • 批准号:
    2335235
  • 财政年份:
    2024
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
  • 批准号:
    2325464
  • 财政年份:
    2024
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
  • 批准号:
    2346230
  • 财政年份:
    2024
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
  • 批准号:
    2314272
  • 财政年份:
    2024
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了