UNS: Developing Rechargeable Li-Metal Electrodes by Controlling the Direction of Dendrite Growth

UNS:通过控制枝晶生长方向开发可充电锂金属电极

基本信息

  • 批准号:
    1511645
  • 负责人:
  • 金额:
    $ 31.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-15 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

PI: Jian Xie Proposal Number: 1511645Rechargeable lithium ion batteries support the development of sustainable energy systems by storing electricity generated by renewable resources such as wind and solar energy, or by powering zero-emission electric vehicles charged by electricity from renewable resources. A fundamental reliability issue with experimental lithium ion batteries that use high-energy density lithium metal electrodes is the formation of lithium metal whiskers within the battery during recharging, which ultimately short out the battery, creating a potential fire hazard and reducing battery life. The goal of this project is to develop a new electrode design that controls this degradation process and prolongs battery lifetime. The electrode design will be guided by fundamental scientific investigation into the mechanisms of failure to improve the reliability and safety of this experimental battery design, so that commercial realization may be possible in the future. As part of the educational activities associated with this project, undergraduate students from under-represented groups in engineering will be given summer research experiences in a multi-disciplinary context, with student recruiting coordinated through the Multidisciplinary Undergraduate Research Institute at Indiana University-Purdue University Indianapolis.Rechargeable lithium ion batteries that use lithium metal as the anode have much higher electrochemical energy storage capacity than carbon-based anodes currently in use. However, imperfections on the metal surface serve as nucleation sites for the deposition of lithium metal dendrites. These microscopic projections grow upon repeated cycling and ultimately pierce the separator, touch the cathode, and short out the device. The overall goal of the proposed research is to develop a new anode design that confines dendrite growth and prolongs the lifetime of lithium ion batteries that use lithium metal as the anode. In the proposed electrode design, a thin lithium ion functionalized carbon coating on the separator facing the lithium metal anode generates lithium dendrites in the direction opposite to dendrite growth from the lithium metal anode. Therefore, dendrite growth along the through-plane direction is ultimately stopped when dendrites growing from opposing directions touch one another and short out. This promotes dendrite growth in the in-plane direction, ultimately consolidating the dendrites into a Li-metal layer. Controlling the growth direction is realized by zeroing the potential difference using the carbon current collector on the separator. To understand these processes and harness them to develop a long-lasting lithium metal anode, the research plan has four objectives. The first objective is to study the mechanism of lithium dendrite formation within the metal electrode using both transmission electron microscopy and and in situ micro X-ray diffraction. The second objective is to elucidate the capacity decay mechanism of the metal electrode through cycle efficiency and micro-focused synchrotron X-ray diffraction measurement techniques. The third objective is to optimize the functionalized nanocarbon layer of the lithium metal electrode for highest possible storage capacity and cycling durability, by comparing different coating techniques and carbon types, and by optimizing nanocarbon morphology through ink formulation. The fourth objective is to consider strategies to make the compacted lithium metal dendrite layer an active component of the lithium metal anode, and to characterize the electrochemical performance of the final anode with different electrolyte systems. Research outcomes will also be used to develop instructional materials for a course on Energy Storage Devices and Systems for EV/HEV at the Indiana University-Purdue University Indianapolis.
PI:Jian Xie 提案编号:1511645可充电锂离子电池通过存储风能和太阳能等可再生资源产生的电力,或为可再生资源电力充电的零排放电动汽车提供动力,支持可持续能源系统的发展。 使用高能量密度锂金属电极的实验锂离子电池的一个基本可靠性问题是在充电过程中电池内形成锂金属晶须,最终使电池短路,产生潜在的火灾危险并缩短电池寿命。 该项目的目标是开发一种新的电极设计来控制这种退化过程并延长电池寿命。 电极设计将以对失败机制的基础科学研究为指导,以提高该实验电池设计的可靠性和安全性,以便将来有可能实现商业化。 作为与该项目相关的教育活动的一部分,来自工程学领域代表性不足群体的本科生将获得多学科背景下的暑期研究经验,学生招募将通过印第安纳大学-普渡大学印第安纳波利斯分校的多学科本科生研究所协调。使用锂金属作为阳极的可充电锂离子电池比锂金属具有更高的电化学储能能力 目前使用的碳基阳极。 然而,金属表面上的缺陷充当锂金属枝晶沉积的成核位点。 这些微小的突出物会在重复循环后生长,最终刺穿隔膜,接触阴极,并使设备短路。 该研究的总体目标是开发一种新的阳极设计,限制枝晶生长并延长使用锂金属作为阳极的锂离子电池的寿命。 在所提出的电极设计中,面向锂金属阳极的隔膜上的薄锂离子功能化碳涂层以与锂金属阳极的枝晶生长相反的方向生成锂枝晶。 因此,当从相反方向生长的枝晶彼此接触并短路时,沿贯穿平面方向的枝晶生长最终停止。 这促进了枝晶在面内方向的生长,最终将枝晶固结成锂金属层。通过使用隔膜上的碳集电器将电势差归零来控制生长方向。 为了了解这些过程并利用它们来开发持久的锂金属阳极,该研究计划有四个目标。 第一个目标是使用透射电子显微镜和原位显微 X 射线衍射研究金属电极内锂枝晶形成的机制。 第二个目标是通过循环效率和微聚焦同步加速器X射线衍射测量技术阐明金属电极的容量衰减机制。 第三个目标是通过比较不同的涂层技术和碳类型,并通过油墨配方优化纳米碳形态,优化锂金属电极的功能化纳米碳层,以获得尽可能高的存储容量和循环耐久性。 第四个目标是考虑使致密的锂金属枝晶层成为锂金属阳极的活性成分的策略,并表征不同电解质体系的最终阳极的电化学性能。 研究成果还将用于为印第安纳大学-普渡大学印第安纳波利斯分校的电动汽车/混合动力汽车储能设备和系统课程开发教学材料。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jian Xie其他文献

Bayesian GAN-Based False Data Injection Attack Detection in Active Distribution Grids With DERs
具有 DER 的主动配电网中基于贝叶斯 GAN 的虚假数据注入攻击检测
Demand Response for Smart Home An Evaluation from an End Users Perspective Based on a High Resolution Power Demand Model
智能家居需求响应基于高分辨率电力需求模型从最终用户角度进行评估
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Bernal;Jian Xie;Mustafa Suslu
  • 通讯作者:
    Mustafa Suslu
Emotional Speech Recognition Based on SVM with GMM Supervector
基于SVM和GMM超向量的情感语音识别
Algebraic Algorithm for Mixed Near-Field and Far-Field Sources Classification and Localization
近场和远场混合源分类和定位的代数算法
A high-resolution smart home power demand model and future impact on load profile in Germany
高分辨率智能家居电力需求模型以及对德国负荷曲线的未来影响

Jian Xie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jian Xie', 18)}}的其他基金

Acquisition of a Field Emission Scanning Electron Microscope (FESEM)
购买场发射扫描电子显微镜 (FESEM)
  • 批准号:
    1229514
  • 财政年份:
    2012
  • 资助金额:
    $ 31.07万
  • 项目类别:
    Standard Grant

相似海外基金

Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 31.07万
  • 项目类别:
    Studentship
Developing behavioural methods to assess pain in horses
开发评估马疼痛的行为方法
  • 批准号:
    2686844
  • 财政年份:
    2025
  • 资助金额:
    $ 31.07万
  • 项目类别:
    Studentship
Developing eye models to improve eye treatments and contact/intraocular lens technologies
开发眼部模型以改善眼部治疗和隐形眼镜/人工晶状体技术
  • 批准号:
    2608661
  • 财政年份:
    2025
  • 资助金额:
    $ 31.07万
  • 项目类别:
    Studentship
Flok Health: Developing a pocket physiotherapist to deliver personalised healthcare at population scale
Flok Health:开发袖珍物理治疗师以在人口规模上提供个性化医疗保健
  • 批准号:
    10100082
  • 财政年份:
    2024
  • 资助金额:
    $ 31.07万
  • 项目类别:
    Collaborative R&D
Developing systemic interventions for intimate partner financial abuse
制定针对亲密伴侣经济虐待的系统干预措施
  • 批准号:
    DP240101075
  • 财政年份:
    2024
  • 资助金额:
    $ 31.07万
  • 项目类别:
    Discovery Projects
NESP MaC Project 4.5– Developing an Integrated Pest Management Framework for Feral Pigs in Coastal Environments 2024-2026 (NAILSMA)
NESP MaC 项目 4.5 — 为 2024-2026 年沿海环境中的野猪制定综合害虫管理框架 (NAILSMA)
  • 批准号:
    global : ba1e00f0-9953-4c17-b990-ba7aed84ce07
  • 财政年份:
    2024
  • 资助金额:
    $ 31.07万
  • 项目类别:
Developing and Visualising a Retrieval-Augmented Deep Learning Model for Population Health Management
开发和可视化用于人口健康管理的检索增强深度学习模型
  • 批准号:
    2905946
  • 财政年份:
    2024
  • 资助金额:
    $ 31.07万
  • 项目类别:
    Studentship
Developing functionalised electrospun scaffolds to exploit neural stromal interactions in wound healing
开发功能化电纺支架以利用神经基质相互作用促进伤口愈合
  • 批准号:
    2910663
  • 财政年份:
    2024
  • 资助金额:
    $ 31.07万
  • 项目类别:
    Studentship
Developing a Census Based Generative Geodemographic Classification System
开发基于人口普查的生成地理人口分类系统
  • 批准号:
    ES/Z50273X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.07万
  • 项目类别:
    Research Grant
Developing new tests and treatments to enable prevention of osteoarthritis.
开发新的测试和治疗方法以预防骨关节炎。
  • 批准号:
    MR/Y003470/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.07万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了