UNS:Intergrating novel nutrient feeding strategies with computational glycosylation models to improve production of complex biotherapeutics from mammalian factories
UNS:将新型营养喂养策略与计算糖基化模型相结合,以提高哺乳动物工厂复杂生物治疗药物的生产
基本信息
- 批准号:1512265
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1512265Betenbaugh, Michael J. Biopharmaceuticals such as recombinant erythropoietin (rEPO) have transformed the lives of millions of patients in the US and around the world by enabling the recipients to address chronic renal failure or other illnesses. Unfortunately, the costs of providing these drugs are often prohibitive, limiting the availability and affordability of biotherapeutic treatments for patients that need them. This project will address both cost and efficacy challenges by transforming biomanufacturing with novel media additives. The quality of rEPO and other drugs will be enhanced by altering the properties of biopharmaceuticals in ways that endow these products with longer circulatory lifetimes, allowing patients to take lower doses at longer intervals. Likewise, this project will lower the costs of manufacturing by incorporating novel inexpensive nutrients that improve the capacity of producer cells to generate high quality drugs. In tandem, advanced computational models will be implemented in order to determine the optimal media formulations for generating high quality biopharmaceuticals. In addition, students from the high school to the post-graduate level will be educated and engaged in important bioprocessing techniques including mammalian cell culture, media design, and pharmaceutical manufacturing. In order to achieve these goals, an experimental and computational systems biotechnology approach will be implemented in which the media will be designed to optimize the glycosylation profile of biotherapeutics such as recombinant erythropoietin (rEPO) produced in Chinese hamster ovary (CHO) cells. CHO cells have emerged as a major cell factory for generating glycoprotein biotherapeutics. The structure and nature of the oligosaccharide (or glycan) component of a glycoprotein therapeutic is extremely important to the quality, efficacy, and value of the products. Biosynthetically, glycan structure is dictated by two factors: levels of glycosylation enyzmes and availability of nucleotide sugar substrates. This project will integrate experimental and computational methods to manipulate nutrient components to enhance the levels of these critical nucleotide sugar substrates and improve glycosylation. A series of novel sugar analogs will be investigated for their capacity to increase the nucleotide sugar pool and improve quality of rEPO and other biological products. These novel sugar analogs, which are simple and inexpensive to produce, contain chemical modifications on specific carbon groups that facilitate crossing the cell membrane for efficient channeling into pathways for nucleotide sugar synthesis. In order to elucidate the impact of these and other nutrients, these media components will be incorporated into a computational model of N-linked glycosylation that currently is based only on glycosylation enzyme transferase activity. The model will be extended to predict the influence on final glycan structures of nucleotide sugar biosynthesis from nutrients or supplements in the media. Such an expansion of the current glycoinformatics suite will enable users to design optimal media compositions for a desirable N-glycan profile present on glycoprotein biotherapeutics. By including the effect of nutrients on metabolism and linking that to the final glycan structure, this modeling tool will have significant versatility and power for rapidly and cost-effectively improving biotherapeutic product quality. As a result, novel nutrients will be incorporated into the bioprocessing media formulation of mammalian cell cultures with the assistance of comptutational algorithms in order to increase production and yield of desirable complex high quality biotherapeutics and reduce the need for time consuming and expensive experimental investigation. This approach may have a broad impact across a number of bioprocesses and biological products.This award by the Biotechnology and Biochemical Engineering Program of CBET is co-funded by the Biomaterials Program of the Division of Materials Research.
重组促红细胞生成素(rEPO)等生物制药通过使接受者能够治疗慢性肾衰竭或其他疾病,已经改变了美国和世界各地数百万患者的生活。不幸的是,提供这些药物的费用往往令人望而却步,限制了有需要的患者获得和负担得起生物治疗。该项目将通过使用新型培养基添加剂来改变生物制造,从而解决成本和效率方面的挑战。通过改变生物制药的特性,使这些产品具有更长的循环寿命,使患者能够以更长的间隔服用更低的剂量,rEPO和其他药物的质量将得到提高。同样,该项目将通过结合新型廉价营养物质来降低生产成本,从而提高生产细胞生产高质量药物的能力。同时,将实施先进的计算模型,以确定最佳的培养基配方,以产生高质量的生物制药。此外,从高中到研究生阶段的学生将接受教育并从事重要的生物加工技术,包括哺乳动物细胞培养,媒体设计和制药制造。为了实现这些目标,将实施实验和计算系统生物技术方法,其中培养基将被设计为优化生物治疗药物的糖基化谱,如在中国仓鼠卵巢(CHO)细胞中产生的重组红细胞生成素(rEPO)。CHO细胞已成为产生糖蛋白生物治疗药物的主要细胞工厂。糖蛋白治疗剂的寡糖(或聚糖)成分的结构和性质对产品的质量、功效和价值极为重要。生物合成中,聚糖的结构由两个因素决定:糖基化酶的水平和核苷酸糖底物的可用性。该项目将整合实验和计算方法来操纵营养成分,以提高这些关键核苷酸糖底物的水平,并改善糖基化。我们将研究一系列新的糖类似物,以增加核苷酸糖库,提高rEPO和其他生物制品的质量。这些新型的糖类似物生产简单,成本低廉,在特定的碳基上含有化学修饰,有助于穿过细胞膜,有效地进入核苷酸糖合成途径。为了阐明这些和其他营养物质的影响,这些培养基成分将被纳入目前仅基于糖基化酶转移酶活性的n -链糖基化计算模型。该模型将被扩展到预测培养基中营养物或补充剂对核苷酸糖生物合成的最终聚糖结构的影响。当前糖信息学套件的这种扩展将使用户能够为糖蛋白生物治疗药物中存在的理想n -聚糖谱设计最佳培养基组成。通过包括营养物质对代谢的影响,并将其与最终的聚糖结构联系起来,该建模工具将具有显著的多功能性和能力,可以快速且经济有效地提高生物治疗产品的质量。因此,在计算算法的帮助下,新的营养物质将被纳入哺乳动物细胞培养的生物处理培养基配方中,以增加所需的复杂高质量生物治疗药物的产量和产量,并减少耗时和昂贵的实验研究的需要。这种方法可能对许多生物过程和生物产品产生广泛的影响。该奖项由CBET生物技术与生化工程项目颁发,由材料研究部生物材料项目共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Betenbaugh其他文献
Data-driven and Physics Informed Modelling of Chinese Hamster Ovary Cell Bioreactors
中国仓鼠卵巢细胞生物反应器的数据驱动和物理知情建模
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:4.3
- 作者:
Tianqi Cui;Tom S. Bertalan;Nelson Ndahiro;Pratik Khare;Michael Betenbaugh;C. Maranas;I. Kevrekidis - 通讯作者:
I. Kevrekidis
Data-driven and physics informed modeling of Chinese Hamster Ovary cell bioreactors
- DOI:
10.1016/j.compchemeng.2024.108594 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:
- 作者:
Tianqi Cui;Tom Bertalan;Nelson Ndahiro;Pratik Khare;Michael Betenbaugh;Costas Maranas;Ioannis G. Kevrekidis - 通讯作者:
Ioannis G. Kevrekidis
Metabolic engineering of emSynechococcus elongatus/em 7942 for enhanced sucrose biosynthesis
集胞藻 elongatus 7942 的代谢工程以增强蔗糖生物合成
- DOI:
10.1016/j.ymben.2023.09.002 - 发表时间:
2023-11-01 - 期刊:
- 影响因子:6.800
- 作者:
Bo Wang;Cristal Zuniga;Michael T. Guarnieri;Karsten Zengler;Michael Betenbaugh;Jamey D. Young - 通讯作者:
Jamey D. Young
Pan-genome-scale metabolic modeling of emBacillus subtilis/em reveals functionally distinct groups
枯草芽孢杆菌泛基因组规模代谢建模揭示功能上不同的群体
- DOI:
10.1128/msystems.00923-24 - 发表时间:
2024-10-22 - 期刊:
- 影响因子:4.600
- 作者:
Maxwell Neal;William Brakewood;Michael Betenbaugh;Karsten Zengler - 通讯作者:
Karsten Zengler
Michael Betenbaugh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Betenbaugh', 18)}}的其他基金
EFRI ELiS: Engineering Fungal Platforms for Sustainable Biomining and Recovery of Valuable Metals from Electronic Wastes
EFRI ELiS:用于可持续生物采矿和从电子废物中回收有价金属的工程真菌平台
- 批准号:
2318122 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
AccelNet-Implementation: International Biomanufacturing Network (IBioNe)
AccelNet-实施:国际生物制造网络 (IBioNe)
- 批准号:
2114716 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Collaborative Research: GOALI: Dynamic regulation of CHO metabolism to optimize biomanufacturing yields and quality
合作研究:GOALI:动态调节 CHO 代谢以优化生物制造产量和质量
- 批准号:
2035079 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
IUCRC Phase II+: Johns Hopkins University: Advanced Mammalian Biomanufacturing Innovation Center (AMBIC)
IUCCRC 第二阶段:约翰霍普金斯大学:先进哺乳动物生物制造创新中心 (AMBIC)
- 批准号:
2100800 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Workshop on Rules of Life: Complexity in Algal Systems; Washington, D.C.; April 2020
生命规则研讨会:藻类系统的复杂性;
- 批准号:
2013902 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: Synthetic Lichen Co-Cultures for Sustainable Generation of Biotechnology Products
合作研究:用于可持续生成生物技术产品的合成地衣共培养物
- 批准号:
1804733 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: GOALI: Metabolic Engineering of Next Generation CHO Hosts for Monoclonal Antibody Production
合作研究:GOALI:用于单克隆抗体生产的下一代 CHO 宿主的代谢工程
- 批准号:
1604527 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Phase I I/UCRC Johns Hopkins University Site: Advanced Mammalian Biomanufacturing Innovation Center (AMBIC)
I 期 I/UCRC 约翰霍普金斯大学基地:先进哺乳动物生物制造创新中心 (AMBIC)
- 批准号:
1624684 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Collaborative Research: Planning Grant: I/UCRC for Advanced Mammalian Biomanufacturing Innovation Center (AMBIC)
合作研究:规划补助金:I/UCRC 先进哺乳动物生物制造创新中心 (AMBIC)
- 批准号:
1464435 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
EFRI-PSBR: Channeling Carbon Flows in Algal Productions Systems from the Molecular to Bioprocessing Scales
EFRI-PSBR:将藻类生产系统中的碳流从分子规模引导至生物加工规模
- 批准号:
1332344 - 财政年份:2013
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似海外基金
Project-Based Certificate Programs for School Youth: Intergrating and Traditional Ecological Knowledge (TEK)
面向中学生的基于项目的证书课程:整合传统生态知识(TEK)
- 批准号:
561040-2021 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
PromoScience Supplement for Collaboration
Development of digital learning platform, intergrating planning, teaching progression tracking and funding MIS
开发数字学习平台,整合规划、教学进度跟踪和资助管理信息系统
- 批准号:
54621 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Feasibility Studies
Intergrating a Smoke-Free Home Intervention into the 5As to Support Cessation
将无烟家庭干预纳入 5A 以支持戒烟
- 批准号:
10442550 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Intergrating a Smoke-Free Home Intervention into the 5As to Support Cessation
将无烟家庭干预纳入 5A 以支持戒烟
- 批准号:
10660960 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Repair and upgrade of the UV-Vis-NIR fluorometer with intergrating sphere and time-resolved capability
具有积分球和时间分辨能力的紫外-可见-近红外荧光计的维修和升级
- 批准号:
RTI-2020-00702 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Research Tools and Instruments
Intergrating a Smoke-Free Home Intervention into the 5As to Support Cessation
将无烟家庭干预纳入 5A 以支持戒烟
- 批准号:
10219194 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Designing Energy Retrofits for Heritage Buildings: Intergrating Social, Cultural and Technical Concerns into the Design Process
遗产建筑能源改造设计:将社会、文化和技术问题纳入设计过程
- 批准号:
2127896 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Studentship
Precision Technologies: Intergrating Agriculture and Geo-Sciences
精密技术:农业与地球科学的结合
- 批准号:
1601512 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Intergrating RNASeq and 3D Embryo Imaging
整合 RNASeq 和 3D 胚胎成像
- 批准号:
496550-2016 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别:
University Undergraduate Student Research Awards
Paper-based microfluidic devices intergrating inGaN/GaN semiconductor microtubes for ultrasensitive detection of disease markers
集成在 GaN/GaN 半导体微管中的纸基微流体装置,用于疾病标记物的超灵敏检测
- 批准号:
463182-2014 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Strategic Projects - Group














{{item.name}}会员




