Collaborative Research: Generalized Fiducial Inference for Massive Data and High Dimensional Problems
协作研究:海量数据和高维问题的广义基准推理
基本信息
- 批准号:1512945
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
R. A. Fisher, the father of modern statistics, proposed the idea of Fiducial Inference in the 1930s. While his proposal led to some interesting methods for quantifying uncertainty, other prominent statisticians of the time did not accept Fisher's approach because it went against the ideas of statistical inference of the time. Beginning around the year 2000, the PIs and collaborators started to re-investigate the ideas of fiducial inference and discovered that Fisher's approach, when properly generalized, would open doors to solve many important and difficult problems of uncertainty quantification. The PIs termed their generalization of Fisher's ideas as generalized fiducial inference. After many years of preliminary investigations, the PIs developed a coherent, well thought out plan for a systematic research program in this area. A large part of this project develops practical solutions for different modeling problems that have natural applications in diverse fields. Finance (volatility estimation) and measurement science (calibration of measurements from different government labs, for example, US NIST) are two primary examples, while others include gene expression data, climate problems, recommender systems, and computer vision. This project is motivated by the success of generalized fiducial inference (GFI) as introduced by the PIs as a generalization of Fisher's fiducial argument. The PIs are now working towards scaling up their GFI methodology to handle big data problems and other difficult problems that have emerged due to our ability to collect massive amounts of data rapidly. In particular the PIs plan to conduct research into the following topics: (i) a thorough investigation of fundamental issues of GFI including connection with Approximate Bayesian Calculations and higher order asymptotics; (ii) sparse covariance estimation using GFI in the "large p small n" context; (iii) development of the idea of Fiducial Selector so that a sparsity of the fiducial distribution is induced as a natural outcome of a minimization problem; (iv) uncertainty quantification for the matrix completion problem using GFI, and (v) applications of GFI to a wide variety of practical problems, such as volatility estimation in finance and international key comparison experiments in measurement science.
现代统计学之父R·A·费希尔在20世纪30年代提出了Fiducial推理的思想。虽然他的建议导致了一些有趣的量化不确定性的方法,但当时其他著名的统计学家并不接受费舍尔的方法,因为它违背了当时的统计推断思想。大约从2000年开始,PIS和合作者开始重新研究信义推理的思想,并发现当适当地推广Fisher的方法时,将为解决不确定性量化的许多重要和困难问题打开大门。PI们将他们对费舍尔思想的概括称为广义信义推理。经过多年的初步调查,私人投资机构为这一领域的系统研究计划制定了一个连贯的、经过深思熟虑的计划。这个项目的很大一部分内容是为不同的建模问题开发实用的解决方案,这些问题在不同的领域具有自然的应用。金融(波动率估计)和测量科学(校准来自不同政府实验室的测量,例如美国NIST)是两个主要例子,其他例子包括基因表达数据、气候问题、推荐系统和计算机视觉。这个项目的动机是广义基准推理(GFI)的成功,它是由PIS引入的,作为Fisher基准论点的推广。私人投资机构目前正致力于扩大其GFI方法,以处理由于我们快速收集海量数据的能力而出现的大数据问题和其他难题。具体而言,投资促进机构计划对下列专题进行研究:(I)彻底调查GFI的基本问题,包括与近似贝叶斯计算和高阶渐近性的联系;(Ii)在“大p小n”的情况下使用GFI进行稀疏协方差估计;(Iii)发展Fiducial Selector的思想,使基准线分布的稀疏性作为最小化问题的自然结果;(Iv)使用GFI对矩阵补全问题进行不确定性量化,以及(V)将GFI应用于各种实际问题,例如金融中的波动性估计和测量科学中的国际关键比较实验。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Locally linear embedding with additive noise
- DOI:10.1016/j.patrec.2019.02.030
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:Justin Wang;Raymond K. W. Wong;Thomas C.M. Lee
- 通讯作者:Justin Wang;Raymond K. W. Wong;Thomas C.M. Lee
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Chun Man Lee其他文献
Thomas Chun Man Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Chun Man Lee', 18)}}的其他基金
Collaborative Research: Emerging Variants of Generalized Fiducial Inference
协作研究:广义基准推理的新兴变体
- 批准号:
2210388 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
DMS-EPSRC Collaborative Research: Advancing Statistical Foundations and Frontiers for and from Emerging Astronomical Data Challenges
DMS-EPSRC 合作研究:为新出现的天文数据挑战推进统计基础和前沿
- 批准号:
2113605 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Generalized Fiducial Inference in the Age of Data Science
协作研究:数据科学时代的广义基准推理
- 批准号:
1916125 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Highly Principled Data Science for Multi-Domain Astronomical Measurements and Analysis
合作研究:用于多领域天文测量和分析的高度原理性数据科学
- 批准号:
1811661 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Principled Science-Driven Methods for Massive, Intricate, and Multifaceted Data in Astronomy and Astrophysics
协作研究:天文学和天体物理学中海量、复杂和多方面数据的原则性科学驱动方法
- 批准号:
1513484 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Some problems in nonparametric statistics
非参数统计中的一些问题
- 批准号:
1301377 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: Generalized Fiducial Inference - An Emerging View
协作研究:广义基准推理 - 一种新兴观点
- 批准号:
1007520 - 财政年份:2010
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: Self-Consistency and Wavelet Regressions with Irregular Designs
协作研究:不规则设计的自洽性和小波回归
- 批准号:
0203901 - 财政年份:2002
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Emerging Variants of Generalized Fiducial Inference
协作研究:广义基准推理的新兴变体
- 批准号:
2210388 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Emerging Variants of Generalized Fiducial Inference
协作研究:广义基准推理的新兴变体
- 批准号:
2210337 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Generalized Cluster Structures on Poisson Varieties and Applications
合作研究:泊松簇的广义簇结构及其应用
- 批准号:
2100785 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Generalized Cluster Structures on Poisson Varieties and Applications
合作研究:泊松簇的广义簇结构及其应用
- 批准号:
2100791 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Fundamentals of Ultra-Dense Wireless Networks with Generalized Repulsion
合作研究:中枢神经系统核心:小型:具有广义斥力的超密集无线网络的基础
- 批准号:
2150486 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Fundamentals of Ultra-Dense Wireless Networks with Generalized Repulsion
合作研究:中枢神经系统核心:小型:具有广义斥力的超密集无线网络的基础
- 批准号:
2006612 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CNS Core: Medium: Collaborative Research: Generalized Caching-As-A-Service
CNS 核心:媒介:协作研究:通用缓存即服务
- 批准号:
1955593 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
CNS Core: Medium: Collaborative Research: Generalized Caching-As-A-Service
CNS 核心:媒介:协作研究:通用缓存即服务
- 批准号:
1956229 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: Fundamentals of Ultra-Dense Wireless Networks with Generalized Repulsion
合作研究:中枢神经系统核心:小型:具有广义斥力的超密集无线网络的基础
- 批准号:
2006453 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Generalized Fiducial Inference in the Age of Data Science
协作研究:数据科学时代的广义基准推理
- 批准号:
1916125 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Standard Grant














{{item.name}}会员




