Collaborative Research: Self-Consistency and Wavelet Regressions with Irregular Designs
协作研究:不规则设计的自洽性和小波回归
基本信息
- 批准号:0203901
- 负责人:
- 金额:$ 9.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2005-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal IDs: DMS - 0204552 and DMS - 0203901PIs: Xiao-Li Meng and Thomas Chun Man LeeTitle: COLLABORATIVE RESEARCH: SELF-CONSISTENCY AND WAVELET REGRESSIONS WITH IRREGULAR DESIGNSAbstractThis award is for a comprehensive research project for a joint investigation, to be conducted by PI Meng of Harvard University (the lead institution) and PI Lee of Colorado State University, on the use of the self-consistency principle for wavelet regressions with irregular designs. Wavelet estimators enjoy excellent theoretical properties and they are capable of adapting to very complex spatial and frequency inhomogeneities. In addition, their computation is very fast when the regression design points are regular. However, when the design points are not regular, as is typical in statistical applications, standard wavelet methods are no longer applicable. This collaborative research proposes to attack this problem from a missing-data perspective by viewing an irregular-design problem as a regular-design one but with missing data. This new perspective allows the investigators to apply well-established missing-data methods, guided by the self-consistency principle, to construct efficient irregular-design wavelet estimators, as well as fast algorithms to compute such estimators.Wavelet regression is a powerful curve and surface fitting method that has attracted enormous attention from researchers across different fields, in particular applied mathematicians, computer scientists, engineers, and statisticians. Self-consistency is a fundamental statistical principle for constructing the most efficient statistical estimators in many incomplete data problems. This collaborate research effort combines these two powerful methods with the aim to make wavelet methods much more applicable to real-life problems, varying from medical imaging to fishery economy to global warming, where irregularities are rules rather than exceptions.
提案ID:DMS - 0204552和DMS -0203901 PI:Xiao-Li Meng和托马斯Chun Man Lee标题:合作研究:自洽性与非正则小波回归摘要本奖项是为了奖励哈佛大学的皮萌教授的一项综合性研究项目(牵头机构)和科罗拉多州立大学的PI Lee,关于在不规则设计的小波回归中使用自洽原理。小波估计器具有优良的理论性能,能够适应非常复杂的空间和频率不均匀性。此外,当回归设计点是规则的时,它们的计算非常快。 然而,当设计点是不规则的,是典型的统计应用,标准小波方法不再适用。这项合作研究提出从丢失数据的角度来解决这个问题,将不规则设计问题视为规则设计问题,但缺少数据。这一新的视角使得研究者可以应用自洽原理指导下的缺失数据方法来构造有效的非规则设计小波估计,以及计算此类估计的快速算法。小波回归是一种强大的曲线和曲面拟合方法,吸引了不同领域研究人员的极大关注,特别是应用数学家,计算机科学家,工程师,和统计学家。自洽性是在许多不完全数据问题中构造最有效的统计估计量的基本统计原则。这项合作研究工作结合了这两种强大的方法,旨在使小波方法更适用于现实生活中的问题,从医学成像到渔业经济再到全球变暖,其中不规则性是规则而不是例外。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Chun Man Lee其他文献
Thomas Chun Man Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Chun Man Lee', 18)}}的其他基金
Collaborative Research: Emerging Variants of Generalized Fiducial Inference
协作研究:广义基准推理的新兴变体
- 批准号:
2210388 - 财政年份:2022
- 资助金额:
$ 9.9万 - 项目类别:
Standard Grant
DMS-EPSRC Collaborative Research: Advancing Statistical Foundations and Frontiers for and from Emerging Astronomical Data Challenges
DMS-EPSRC 合作研究:为新出现的天文数据挑战推进统计基础和前沿
- 批准号:
2113605 - 财政年份:2021
- 资助金额:
$ 9.9万 - 项目类别:
Standard Grant
Collaborative Research: Generalized Fiducial Inference in the Age of Data Science
协作研究:数据科学时代的广义基准推理
- 批准号:
1916125 - 财政年份:2019
- 资助金额:
$ 9.9万 - 项目类别:
Standard Grant
Collaborative Research: Highly Principled Data Science for Multi-Domain Astronomical Measurements and Analysis
合作研究:用于多领域天文测量和分析的高度原理性数据科学
- 批准号:
1811661 - 财政年份:2018
- 资助金额:
$ 9.9万 - 项目类别:
Standard Grant
Collaborative Research: Principled Science-Driven Methods for Massive, Intricate, and Multifaceted Data in Astronomy and Astrophysics
协作研究:天文学和天体物理学中海量、复杂和多方面数据的原则性科学驱动方法
- 批准号:
1513484 - 财政年份:2015
- 资助金额:
$ 9.9万 - 项目类别:
Continuing Grant
Collaborative Research: Generalized Fiducial Inference for Massive Data and High Dimensional Problems
协作研究:海量数据和高维问题的广义基准推理
- 批准号:
1512945 - 财政年份:2015
- 资助金额:
$ 9.9万 - 项目类别:
Continuing Grant
Some problems in nonparametric statistics
非参数统计中的一些问题
- 批准号:
1301377 - 财政年份:2013
- 资助金额:
$ 9.9万 - 项目类别:
Continuing Grant
Collaborative Research: Generalized Fiducial Inference - An Emerging View
协作研究:广义基准推理 - 一种新兴观点
- 批准号:
1007520 - 财政年份:2010
- 资助金额:
$ 9.9万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329908 - 财政年份:2024
- 资助金额:
$ 9.9万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329909 - 财政年份:2024
- 资助金额:
$ 9.9万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 9.9万 - 项目类别:
Standard Grant
Collaborative Research: Self-powered Electrochemical Actuators toward Untethered Soft Mobile Robots
合作研究:用于无束缚软移动机器人的自供电电化学执行器
- 批准号:
2329674 - 财政年份:2023
- 资助金额:
$ 9.9万 - 项目类别:
Standard Grant
Collaborative Research: Self-powered Electrochemical Actuators toward Untethered Soft Mobile Robots
合作研究:用于无束缚软移动机器人的自供电电化学执行器
- 批准号:
2329675 - 财政年份:2023
- 资助金额:
$ 9.9万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Nanoparticle Self-assembly into Laser/Powder-based Additive Manufacturing of Multimodal Metallic Materials
合作研究:将纳米粒子自组装集成到多模态金属材料的激光/粉末增材制造中
- 批准号:
2231077 - 财政年份:2023
- 资助金额:
$ 9.9万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
- 批准号:
2305882 - 财政年份:2023
- 资助金额:
$ 9.9万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Self-Driving Continuous Fuzzing
协作研究:SaTC:核心:小型:自驱动连续模糊测试
- 批准号:
2247880 - 财政年份:2023
- 资助金额:
$ 9.9万 - 项目类别:
Continuing Grant
Collaborative Research: Using a Self-Guided Online Intervention to Address Student Fear of Negative Evaluation in Active Learning Undergraduate Biology Courses
合作研究:利用自我引导的在线干预来解决学生在主动学习本科生物学课程中对负面评价的恐惧
- 批准号:
2409880 - 财政年份:2023
- 资助金额:
$ 9.9万 - 项目类别:
Standard Grant
Collaborative Research: Supporting Chemistry Students’ Science Practice Self-Efficacy
合作研究:支持化学学生的科学实践自我效能感
- 批准号:
2236032 - 财政年份:2023
- 资助金额:
$ 9.9万 - 项目类别:
Standard Grant














{{item.name}}会员




