Order and Disorder in Interacting Spin Systems and Random Networks

相互作用的自旋系统和随机网络中的有序和无序

基本信息

  • 批准号:
    1513403
  • 负责人:
  • 金额:
    $ 25.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

This research project aims to develop new tools in probability theory that will enhance understanding of interacting particle systems and random networks. The motivating problems touch fundamental questions such as the effect of initial conditions (e.g., ordered or disordered, random or fixed) in Markov chains on their time of convergence to equilibrium, and structure formation (surface shape, subgraphs in networks, etc.) versus disorder under various conditions. Many of the questions under study remain open, despite extensive studies offering detailed heuristics and corroborating experiments; the goal of this project is to make progress on these via new methods of analysis, which are expected to find further applications in probability theory as well as in other areas. The first research project focuses on the interplay between a spin system, such as the Ising or Potts model, and a natural Markov chain modelling its evolution, for example Metropolis or heat-bath Glauber dynamics. The phase transition that both the dynamical and static models undergo has received much attention, yet various basic problems have so far been out of reach of rigorous analysis in all three (high, low, and critical) temperature regimes. This project studies several such problems, as well as newer ones suggested by recent advances, including understanding the effect of the initial configurations (random or deterministic, balanced or alternating, etc.) on the mixing time at high temperature and establishing a power-law for mixing at criticality in dimension 3 and higher. A second research direction focuses on random surface models, as well as their evolution, with ramifications for the Ising model and the roughening transition in crystals. The final research topic addresses random walks on the Erdos-Renyi random graph: the project aims to study the effect of the initial state on the mixing time of random walks, and in different regimes to establish typical structural properties, such as robustness of its features to noise, and atypical ones, such as whether the system organizes to asymmetric structures when conditioned on an atypical event (large deviations).
该研究项目旨在开发概率论中的新工具,以增强对相互作用粒子系统和随机网络的理解。激励问题触及基本问题,如初始条件的影响(例如,有序或无序,随机或固定)在马尔可夫链收敛到平衡点的时间,和结构的形成(表面形状,网络中的子图等)。在不同的条件下与紊乱相比较。许多正在研究的问题仍然是开放的,尽管广泛的研究提供了详细的物理学和证实实验;该项目的目标是通过新的分析方法在这些方面取得进展,预计将在概率论和其他领域找到进一步的应用。第一个研究项目的重点是自旋系统之间的相互作用,如伊辛或波茨模型,和自然马尔可夫链模拟其演变,例如大都会或热浴Glauber动力学。相变的动态和静态模型都受到了很大的关注,但各种基本问题,迄今为止,在所有三个(高,低,临界)温度制度的严格分析。 这个项目研究了几个这样的问题,以及最近的进展提出的新问题,包括理解初始配置的影响(随机或确定性,平衡或交替等)。对高温下混合时间的影响,并建立了3维及更高维临界混合的幂律。 第二个研究方向集中在随机表面模型,以及它们的演变,伊辛模型和粗糙化过渡的影响晶体。最后一个研究主题是Erdos-Renyi随机图上的随机游走:该项目旨在研究初始状态对随机游走混合时间的影响,并在不同的制度中建立典型的结构属性,例如其特征对噪声的鲁棒性,以及非典型的,例如系统在非典型事件(大偏差)的条件下是否组织为非对称结构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eyal Lubetzky其他文献

Uniformly cross intersecting families
  • DOI:
    10.1007/s00493-009-2332-6
  • 发表时间:
    2009-07-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Noga Alon;Eyal Lubetzky
  • 通讯作者:
    Eyal Lubetzky
Poisson approximation for non-backtracking random walks
  • DOI:
    10.1007/s11856-009-0112-z
  • 发表时间:
    2010-01-16
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Noga Alon;Eyal Lubetzky
  • 通讯作者:
    Eyal Lubetzky
Extrema of 3D Potts Interfaces
Privileged users in zero-error transmission over a noisy channel
  • DOI:
    10.1007/s00493-007-2263-z
  • 发表时间:
    2007-11-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Noga Alon;Eyal Lubetzky
  • 通讯作者:
    Eyal Lubetzky
Harmonic Pinnacles in the Discrete Gaussian Model
  • DOI:
    10.1007/s00220-016-2628-5
  • 发表时间:
    2016-05-17
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Eyal Lubetzky;Fabio Martinelli;Allan Sly
  • 通讯作者:
    Allan Sly

Eyal Lubetzky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eyal Lubetzky', 18)}}的其他基金

Structure and Evolution of Low Temperature Spin Systems: Entropic Repulsion and Metastability
低温自旋系统的结构和演化:熵斥力和亚稳态
  • 批准号:
    2054833
  • 财政年份:
    2021
  • 资助金额:
    $ 25.54万
  • 项目类别:
    Standard Grant
Dynamical Evolution of Interacting Particle Systems: Mixing Times, Interface Fluctuations and Universality
相互作用粒子系统的动态演化:混合时间、界面波动和普遍性
  • 批准号:
    1812095
  • 财政年份:
    2018
  • 资助金额:
    $ 25.54万
  • 项目类别:
    Continuing Grant

相似国自然基金

双极性躁郁症(Bipolar Disorder)的人诱导多能干细胞模型的建立和神经病理研究
  • 批准号:
    31471020
  • 批准年份:
    2014
  • 资助金额:
    87.0 万元
  • 项目类别:
    面上项目

相似海外基金

Role of intestinal serotonin transporter in post traumatic stress disorder
肠道血清素转运蛋白在创伤后应激障碍中的作用
  • 批准号:
    10590033
  • 财政年份:
    2024
  • 资助金额:
    $ 25.54万
  • 项目类别:
Gut immunity: Unraveling Mechanisms and Strategies for Neonatal Intestinal Disorder
肠道免疫:揭示新生儿肠道疾病的机制和策略
  • 批准号:
    502588
  • 财政年份:
    2024
  • 资助金额:
    $ 25.54万
  • 项目类别:
Protein disorder in crop stress adaptation
作物逆境适应中的蛋白质紊乱
  • 批准号:
    BB/Z514986/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.54万
  • 项目类别:
    Fellowship
Elucidating the role of Cnot3 in regulating social behavior in Autism Spectrum Disorder
阐明 Cnot3 在调节自闭症谱系障碍社会行为中的作用
  • 批准号:
    24K18632
  • 财政年份:
    2024
  • 资助金额:
    $ 25.54万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
I-Corps: Integrated Wearable System for Management of Substance Use Disorder
I-Corps:用于管理药物使用障碍的集成可穿戴系统
  • 批准号:
    2401028
  • 财政年份:
    2024
  • 资助金额:
    $ 25.54万
  • 项目类别:
    Standard Grant
ADMIRED - Ai Driven MonItoRing Equipment for Bipolar Disorder
钦佩 - 人工智能驱动的双相情感障碍监测设备
  • 批准号:
    10089421
  • 财政年份:
    2024
  • 资助金额:
    $ 25.54万
  • 项目类别:
    Collaborative R&D
Movement perception in Functional Neurological Disorder (FND)
功能性神经疾病 (FND) 的运动感知
  • 批准号:
    MR/Y004000/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.54万
  • 项目类别:
    Research Grant
Hyperkinetic Movement Disorderの発現機序の解明とGABA放出抑制薬による治療
阐明多动性运动障碍的机制和 GABA 释放抑制剂的治疗
  • 批准号:
    24K10655
  • 财政年份:
    2024
  • 资助金额:
    $ 25.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Diagnostic and Therapeutic Potential of Circular RNAs in Autism Spectrum Disorder
环状 RNA 在自闭症谱系障碍中的诊断和治疗潜力
  • 批准号:
    24K10503
  • 财政年份:
    2024
  • 资助金额:
    $ 25.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: Aspen Winter Conference: Disorder and Quantum Phases of Matter
会议:阿斯彭冬季会议:物质的无序和量子相
  • 批准号:
    2409357
  • 财政年份:
    2023
  • 资助金额:
    $ 25.54万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了