Spatial-Temporal Modeling and Estimation of Epidemic Diseases and Invasive Plants Using Hawkes Point Processes
使用霍克斯点过程对流行病和入侵植物进行时空建模和估计
基本信息
- 批准号:1513657
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research will provide new insights into the spread of epidemics and invasive species. In particular, this project will introduce new, more precise methods of estimating the spatial-temporal spread of epidemics. The results will also be more robust and less dependent on potentially faulty modeling assumptions compared with those based on currently used epidemiological methods. As a result, the project will lead to improved, more accurate estimations and forecasts, and a better understanding of the impact of policy decisions related to the spread of epidemics and invasive species. Such implications are important for preparedness as well as for urban planning, insurance, and public health policy. The results will be disseminated scientifically, rigorously, and responsibly, reflecting as accurately as possible the true threat presented by infectious or invasive species. This project is especially timely given the public health threat of recent disease epidemics such as Ebola.This research project makes use of spatial-temporal Hawkes point process models to characterize the dynamics of both human disease epidemics and invasive species spread. Hawkes models are currently widely used in seismology to describe earthquake catalogs. Though these models have outperformed their competitors in earthquake forecasting experiments, and are often called Epidemic-Type Aftershock Sequence (ETAS) models based on the notion that earthquakes spread like epidemics, their use in application to the spread of diseases or invasive species has been sparse. Instead, epidemiologists have primarily used compartmental SIR models and their variants, which can have serious limitations when used to describe the detailed local behavior of an epidemic and can significantly overpredict counts of infections such as SARS. Indeed, existing estimates of epidemic spread rates are fundamentally model-dependent, and the addition of seemingly small changes to the models, or their parameters, can result in dramatic differences in local hazard estimates. This project will use and extend state of the art residual analysis techniques, such as deviance residuals, super-thinned residuals, and Voronoi residuals, in order to assess the goodness-of-fit of existing and proposed models and suggest ways to refine and improve them. Recently, a modified Hawkes model was fit to sightings of one invasive species of red banana trees spreading in a Costa Rican rainforest, and the results proved useful for estimating immigration and spatial-temporal spread rates, forecasting, and the detailed description of properties of the invasive species. This type of point process analysis will be extended to the study of human disease epidemics as well as other invasive species. This project will use recently developed statistical methods for estimating Hawkes point process models and their parameters, including non-parametric techniques for estimating the triggering function without relying on potentially flawed parametric models for the triggering rate, as well as modern integral approximation techniques that substantially add stability and computational efficiency to parameter estimates.
这项研究将为流行病和入侵物种的传播提供新的见解。 特别是,该项目将采用新的、更精确的方法来估计流行病的时空传播。 与基于目前使用的流行病学方法的结果相比,结果也将更稳健,更少依赖于潜在错误的建模假设。 因此,该项目将导致改进和更准确的估计和预测,并更好地了解与流行病和入侵物种传播有关的政策决定的影响。 这些影响对于备灾以及城市规划、保险和公共卫生政策都很重要。 研究结果将以科学、严谨和负责任的方式传播,尽可能准确地反映传染性或入侵物种带来的真正威胁。 考虑到最近埃博拉等流行病对公共卫生的威胁,该项目尤为及时。该研究项目利用时空Hawkes点过程模型来表征人类疾病流行和入侵物种传播的动态。 霍克斯模型是目前地震学中广泛使用的描述地震目录的模型。 虽然这些模型在地震预测实验中表现优于竞争对手,并且通常被称为流行病型余震序列(ETAS)模型,这是基于地震像流行病一样传播的概念,但它们在疾病或入侵物种传播中的应用很少。 相反,流行病学家主要使用房室SIR模型及其变体,当用于描述流行病的详细局部行为时可能具有严重的局限性,并且可以显着高估SARS等感染的计数。 事实上,现有的流行病传播率估计基本上依赖于模型,对模型或其参数进行看似很小的改变,就可能导致局部危险估计的巨大差异。 该项目将使用和扩展最先进的残差分析技术,如偏差残差、超细化残差和Voronoi残差,以评估现有和拟议模型的拟合优度,并提出改进和改进方法。 最近,一个修改后的霍克斯模型是适合的目击一个入侵物种的红香蕉树蔓延在哥斯达黎加热带雨林,其结果证明是有用的移民和时空传播率估计,预测,并详细描述的属性的入侵物种。 这种类型的点过程分析将扩展到人类疾病流行病以及其他入侵物种的研究。 该项目将使用最近开发的统计方法来估计霍克斯点过程模型及其参数,包括非参数技术,用于估计触发函数,而不依赖于触发率的潜在缺陷参数模型,以及现代积分近似技术,大大增加了参数估计的稳定性和计算效率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Frederic Schoenberg其他文献
Magnitude-weighted goodness-of-fit scores for earthquake forecasting
用于地震预报的量级加权拟合优度评分
- DOI:
10.1016/j.spasta.2025.100895 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:2.500
- 作者:
Frederic Schoenberg - 通讯作者:
Frederic Schoenberg
Some statistical problems involved in forecasting and estimating the spread of SARS-CoV-2 using Hawkes point processes and SEIR models
- DOI:
10.1007/s10651-023-00591-6 - 发表时间:
2023-11 - 期刊:
- 影响因子:3.8
- 作者:
Frederic Schoenberg - 通讯作者:
Frederic Schoenberg
Frederic Schoenberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Frederic Schoenberg', 18)}}的其他基金
ATD: Collaborative Research: Multi-task, Multi-Scale Point Processes for Modeling Infectious Disease Threats
ATD:协作研究:用于建模传染病威胁的多任务、多尺度点过程
- 批准号:
2124433 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Analysis of Neuronal Spike Trains using Prototype Point Processes
使用原型点过程分析神经元尖峰序列
- 批准号:
0907708 - 财政年份:2009
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Spatial-temporal Analysis of Earthquake Catalogs using Point Processes
使用点过程的地震目录时空分析
- 批准号:
0306526 - 财政年份:2003
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Fire Hazard Estimation Using Point Process Methods
使用点过程方法进行火灾危险估计
- 批准号:
9978318 - 财政年份:1999
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似海外基金
ATD: Statistical Modeling of Spatial Temporal Human Mobility Flows from Aggregated Mobile Phone Data
ATD:根据聚合的移动电话数据对时空人类移动流进行统计建模
- 批准号:
2220231 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Elucidating spatial-temporal tritium-tracer dynamics in Fukushima headwater c atchments by field observation and modeling
通过现场观测和建模阐明福岛源头流域的时空氚示踪动态
- 批准号:
23K11446 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creating the Gold Standard Air Quality and Exposure Monitoring Tool for Train Stations and Train-Care Depots, using High Spatial & Temporal Resolution Data, Real-time Automated Outputs, Digital Twins and Dispersion-Modeling using Advanced Ray-Tracing
使用 High Spatial 为火车站和列车维修站创建黄金标准空气质量和暴露监测工具
- 批准号:
10002510 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Small Business Research Initiative
Analysis and modeling of spatial and temporal non-local properties of turbulent eddy diffusivity approximation
湍流涡扩散率近似的时空非局域特性分析与建模
- 批准号:
20K04282 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Post-wildfire Ground Deformation over Permafrost Areas: Detection and Modeling of Spatial-Temporal Changes
多年冻土地区野火后地面变形:时空变化的检测和建模
- 批准号:
19K03982 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Modeling the Spatial and Temporal Dynamics of Vector-borne Diseases in Florida: The Case of Zika Outbreak in 2016
合作研究:佛罗里达州媒介传播疾病的时空动态建模:以 2016 年寨卡病毒爆发为例
- 批准号:
1853562 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Collaborative Research: Modeling the Spatial and Temporal Dynamics of Vector-borne Diseases in Florida: The Case of Zika Outbreak in 2016
合作研究:佛罗里达州媒介传播疾病的时空动态建模:以 2016 年寨卡病毒爆发为例
- 批准号:
1853622 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Collaborative Research: High-Dimensional Spatial-Temporal Modeling and Inference for Large Multi-Source Environmental Monitoring Systems
合作研究:大型多源环境监测系统的高维时空建模与推理
- 批准号:
1916349 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Spatial-Temporal Modeling and Computation for Physical Processes and Numerical Simulations
物理过程和数值模拟的时空建模和计算
- 批准号:
1916208 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Collaborative Research: High-Dimensional Spatial-Temporal Modeling and Inference for Large Multi-Source Environmental Monitoring Systems
合作研究:大型多源环境监测系统的高维时空建模与推理
- 批准号:
1916395 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Standard Grant