ATD: Collaborative Research: Multi-task, Multi-Scale Point Processes for Modeling Infectious Disease Threats

ATD:协作研究:用于建模传染病威胁的多任务、多尺度点过程

基本信息

  • 批准号:
    2124433
  • 负责人:
  • 金额:
    $ 14.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This project develops new point-process based algorithms for modeling and forecasting event-level infectious disease data, such as when an epidemic is emerging, near elimination, or for contact tracing. The methods developed through the project have applications to source detection of super-spreader events, identification of case importation trends, and providing better risk assessments of emerging epidemics and future pandemics. The methods developed through the project also have applications beyond epidemiology where point processes are used, including social media, seismology, and criminology. The project will train two PhD students in statistics and computer science. This project will support one graduate student per year at each university for each of the three years of the grant. This project develops new point-process based algorithms for solving four important tasks that arise in modeling infectious disease threats over a range of temporal and spatial scales: 1) incorporating realistic transmission and reporting mechanisms, 2) link prediction in the transmission graph connecting separate geographic regions under surveillance, 3) source detection of the spatial-temporal and network locations of super-spreader events, and 4) modeling emerging disease epidemics over timescales of decades and spatial scales of the globe. Expectation maximization algorithms are derived to infer a probabilistic branching structure that can be used for contact tracing and source detection. Multivariate Hawkes processes are formulated to infer cross-transmission across separate geographic regions, where new theory and methods are needed to handle reproduction above the critical threshold of 1. Point process analogs to compartmental models are developed through the project that can incorporate realistic transmission and under-reporting mechanisms (e.g. exposure period, asymptomatic cases) to improve forecasts and prevalence estimation. Finally, this project develops models of emerging epidemic events for determining the separability of disease parameters vs. space and time and assessing the risk that an outbreak will become a pandemic.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目开发了新的基于点过程的算法,用于建模和预测事件级传染病数据,例如流行病何时出现,接近消除或接触者追踪。通过该项目开发的方法可应用于超级传播者事件的源头检测,确定病例输入趋势,并对新出现的流行病和未来的大流行病提供更好的风险评估。通过该项目开发的方法还具有流行病学以外的应用,其中使用点过程,包括社交媒体,地震学和犯罪学。 该项目将培训两名统计学和计算机科学博士生。该项目将在赠款的三年中每年资助每所大学的一名研究生。该项目开发了新的基于点过程的算法,用于解决在一系列时间和空间尺度上建模传染病威胁时出现的四个重要任务:1)结合现实的传输和报告机制,2)在传输图中连接受监视的单独地理区域的链路预测,3)超级传播者事件的时空和网络位置的源检测,以及4)在几十年的时间尺度和地球仪的空间尺度上对新出现的疾病流行进行建模。 期望最大化算法推导出一个概率分支结构,可用于接触跟踪和源检测。制定多变量霍克斯过程来推断跨不同地理区域的交叉传播,需要新的理论和方法来处理繁殖超过临界阈值1。 通过该项目开发了房室模型的点过程类似物,可以将现实的传播和漏报机制(例如暴露期、无症状病例)纳入其中,以改进预测和流行率估计。最后,该项目开发了新出现的流行病事件模型,用于确定疾病参数与空间和时间的可分性,并评估爆发将成为流行病的风险。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Frederic Schoenberg其他文献

Magnitude-weighted goodness-of-fit scores for earthquake forecasting
用于地震预报的量级加权拟合优度评分
  • DOI:
    10.1016/j.spasta.2025.100895
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Frederic Schoenberg
  • 通讯作者:
    Frederic Schoenberg
Some statistical problems involved in forecasting and estimating the spread of SARS-CoV-2 using Hawkes point processes and SEIR models

Frederic Schoenberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Frederic Schoenberg', 18)}}的其他基金

Spatial-Temporal Modeling and Estimation of Epidemic Diseases and Invasive Plants Using Hawkes Point Processes
使用霍克斯点过程对流行病和入侵植物进行时空建模和估计
  • 批准号:
    1513657
  • 财政年份:
    2015
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Continuing Grant
Analysis of Neuronal Spike Trains using Prototype Point Processes
使用原型点过程分析神经元尖峰序列
  • 批准号:
    0907708
  • 财政年份:
    2009
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
Spatial-temporal Analysis of Earthquake Catalogs using Point Processes
使用点过程的地震目录时空分析
  • 批准号:
    0306526
  • 财政年份:
    2003
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
Fire Hazard Estimation Using Point Process Methods
使用点过程方法进行火灾危险估计
  • 批准号:
    9978318
  • 财政年份:
    1999
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
  • 批准号:
    2220495
  • 财政年份:
    2023
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319370
  • 财政年份:
    2023
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319552
  • 财政年份:
    2023
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219904
  • 财政年份:
    2023
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319371
  • 财政年份:
    2023
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319372
  • 财政年份:
    2023
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319551
  • 财政年份:
    2023
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220523
  • 财政年份:
    2023
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220529
  • 财政年份:
    2023
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了