EDT: Mathematical Methods for Water Problems
EDT:水问题的数学方法
基本信息
- 批准号:1514606
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-15 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project provides graduate students with tools needed to recognize opportunities for development of mathematical approaches to challenges related to global environmental change, from physics to biology to society, using as the common denominator the subject of water. These environmental and societal challenges involve many complex factors, and students will be trained to apply and implement mathematical strategies that effectively address these complexities. Essential to the training will be opportunities afforded by visits to important European policy centers, such as the International Institute for Applied Systems Analysis (Austria) and the Stockholm Resilience Center, where policy issues are articulated and integrated with scientific analyses. The overarching goal of this project is to offer an avenue to train talented mathematical scientists to contribute substantively to the understanding of the interactions between society and nature and to formulate well-founded strategies to manage these interactions to assure a sustainable future. This project has received co-funding from the Global Venture Fund of the Office of International Science and Engineering. The mathematical modeling of the problems addressed in this project involves a variety of tools, from game theory and network theory to deterministic and stochastic partial differential equations. The application of powerful analytical and numerical methods to the challenges of modeling water as a societal resource promises significant advances in policy and planning. On the other hand, the questions raised by societal challenges related to water will require new directions of research in game theory and stochastic and deterministic partial differential equations, contributing to advances in mathematics. The interactions among mathematicians and scientists in this project will bring to bear powerful new mathematical perspective and techniques to societal problems surrounding the crucial resource that is water.
该项目为研究生提供了必要的工具,以水为公分母,认识到发展数学方法以应对与全球环境变化有关的挑战的机会,从物理到生物再到社会。这些环境和社会挑战涉及许多复杂的因素,学生将接受培训,以应用和实施有效解决这些复杂问题的数学策略。培训的关键是通过访问重要的欧洲政策中心提供机会,例如国际应用系统分析研究所(奥地利)和斯德哥尔摩复原力中心,这些中心阐述政策问题并将其与科学分析结合起来。该项目的总体目标是提供一种途径,培养有才华的数学科学家,为理解社会与自然之间的相互作用作出实质性贡献,并制定有充分依据的战略来管理这些相互作用,以确保可持续的未来。该项目得到了国际科学和工程办公室全球风险基金的共同资助。本项目所涉及问题的数学建模涉及多种工具,从博弈论和网络理论到确定性和随机性偏微分方程式。将强大的分析和数值方法应用于将水作为一种社会资源建模的挑战,有望在政策和规划方面取得重大进展。另一方面,与水有关的社会挑战提出的问题将需要博弈论以及随机和确定性偏微分方程式的新研究方向,从而促进数学的进步。这个项目中的数学家和科学家之间的互动将带来强大的新的数学观点和技术,以解决围绕关键资源--水--的社会问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Constantin其他文献
in Applied Mathematics and Computational Science
应用数学和计算科学博士
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
M. A. K. Otovshchikova;D. M. K. F. Irsov;S. H. H. Ong;UI L;John B. Bell;Marsha Berger;Phillip Colella;Lawrence Berkeley;Usa Nat. Lab.;Peter Constantin;L. Greengard;Rupert Klein;Nigel Goldenfeld;R. LeVeque;J. Sethian - 通讯作者:
J. Sethian
Applied Mathematics and Computational
应用数学与计算
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
R. O. I. S. Aye;John B. Bell;Marsha J. Berger;Phillip Colella;Lawrence Berkeley;Usa Nat. Lab.;Peter Constantin;L. Greengard;Rupert Klein;Nigel Goldenfeld;R. LeVeque;J. Sethian - 通讯作者:
J. Sethian
Spectral barriers and inertial manifolds for dissipative partial differential equations
耗散偏微分方程的谱垒和惯性流形
- DOI:
10.1007/bf01048790 - 发表时间:
1989 - 期刊:
- 影响因子:1.3
- 作者:
Peter Constantin;C. Foias;B. Nicolaenko;R. Temam - 通讯作者:
R. Temam
Smoluchowski Navier-Stokes Systems
斯莫洛乔夫斯基纳维-斯托克斯系统公司
- DOI:
10.1090/conm/429/08232 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Peter Constantin - 通讯作者:
Peter Constantin
Onsager's conjecture on the energy conservation for solutions of Euler's equation
- DOI:
10.1007/bf02099744 - 发表时间:
1994-10-01 - 期刊:
- 影响因子:2.600
- 作者:
Peter Constantin;E Weinan;Edriss S. Titi - 通讯作者:
Edriss S. Titi
Peter Constantin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Constantin', 18)}}的其他基金
Symmetry, Singularity, and Stability in Fluids and Plasmas
流体和等离子体中的对称性、奇异性和稳定性
- 批准号:
2106528 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Complex Systems and Boundary Interactions
复杂系统和边界相互作用
- 批准号:
1713985 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
- 批准号:
1159155 - 财政年份:2012
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
- 批准号:
1265132 - 财政年份:2012
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Nonlinear Fokker-Planck Equations and Hybrid Stochastic Deterministic Systems
非线性 Fokker-Planck 方程和混合随机确定性系统
- 批准号:
1240743 - 财政年份:2011
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Nonlinear Fokker-Planck Equations and Hybrid Stochastic Deterministic Systems
非线性 Fokker-Planck 方程和混合随机确定性系统
- 批准号:
0804380 - 财政年份:2008
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research - Smoluchowski Equations: Analysis of Dynamics, Singularities and Statistics in Complex Fluid-Particle Mixtures.
合作研究 - Smoluchowski 方程:复杂流体-粒子混合物中的动力学、奇点和统计分析。
- 批准号:
0504213 - 财政年份:2005
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Singularities and statistics in nonlinear PDE
非线性偏微分方程中的奇异性和统计量
- 批准号:
0202531 - 财政年份:2002
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似海外基金
Conference: Mathematical Methods for Novel Metamaterials
会议:新型超材料的数学方法
- 批准号:
2328600 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Conference: Mathematical models and numerical methods for multiphysics problems
会议:多物理问题的数学模型和数值方法
- 批准号:
2347546 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Development of mathematics teaching materials, teaching methods, and curricula to foster the ability to create and analyze mathematical models
开发数学教材、教学方法和课程,培养创建和分析数学模型的能力
- 批准号:
23H01028 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical methods for quantum many-body systems
量子多体系统的数学方法
- 批准号:
2895294 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Studentship
New developments in quasi-Monte Carlo methods through applications of mathematical statistics
数理统计应用准蒙特卡罗方法的新发展
- 批准号:
23K03210 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Data Analysis of Cross-Coupling Reactions Using Enhanced Mathematical Methods to Decipher Complexity
使用增强数学方法分析交叉偶联反应的复杂性
- 批准号:
2885384 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Studentship
Development of mathematical foundation for methods of neuronal activity data analysis
神经元活动数据分析方法的数学基础的发展
- 批准号:
23K10978 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Methods in Linguistics and Phylogenetics
语言学和系统发育学中的数学方法
- 批准号:
RGPIN-2019-06911 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual
Mathematical modelling and computational methods for imaging and advanced sensor technology
成像和先进传感器技术的数学建模和计算方法
- 批准号:
RGPIN-2020-04561 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual
Mathematical theory and computational methods for seismic full waveform inversion problems
地震全波形反演问题的数学理论与计算方法
- 批准号:
RGPIN-2019-04830 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual