Mathematical Analysis of Fluid Flow at High Reynolds Number from the Point of View of Turbulence
从湍流角度进行高雷诺数流体流动的数学分析
基本信息
- 批准号:1514771
- 负责人:
- 金额:$ 17.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
While the equations describing the motion of incompressible fluids have been around for more than two centuries, the underlying mathematics is still not fully understood. Do the solutions of the Navier-Stokes equations correctly describe what we see in fluid experiments? Can we use these equations to make precise predictions about the flows, to predict tomorrow's weather, or to predict the macro-scale evolution of the Earth's climate? These questions are conjecturally related through the phenomenological theories of turbulence and the statistical properties of solutions to the Euler and Navier-Stokes equations. When attempting to give rigorous answers to these questions we are faced with new frontiers in mathematical analysis, and fundamental new ideas are needed to understand the underlying phenomena. In this project the investigator studies the relation between turbulence and the equations that are used to describe fluid flows. The project focuses on furthering our understanding of the hypothesized link between fluid turbulence and the Navier-Stokes equations. The complexity of turbulent flows observed in experiments translates into fundamental mathematical issues, chief among which are the problems of singularities, uniqueness, and stability in the fluid equations. The investigator and colleagues attack these problems from two intimately related angles: by analyzing the statistical properties of solutions to stochastic partial differential equations; and by studying the emergence of singularities in the Euler and related active scalar equations. In tackling these problems the investigator appeals to ideas from hypoellipticity (in the sense of Hormander), convex integration, Lagrangian particle adapted methods, and Landau damping. The goal is to develop nonlinear, solution-adapted methods.
虽然描述不可压缩流体运动的方程已经存在了两个多世纪,但其基础数学仍然没有完全理解。 纳维尔-斯托克斯方程的解是否正确地描述了我们在流体实验中所看到的? 我们能用这些方程来精确预测气流,预测明天的天气,或者预测地球气候的宏观演变吗? 这些问题通过湍流的唯象理论和欧拉方程和纳维尔-斯托克斯方程解的统计性质在理论上相互关联。 当试图给出这些问题的严格答案时,我们面临着数学分析的新领域,需要基本的新思想来理解潜在的现象。 在这个项目中,研究人员研究湍流和用于描述流体流动的方程之间的关系。 该项目的重点是进一步了解流体湍流和Navier-Stokes方程之间的假设联系。 在实验中观察到的湍流的复杂性转化为基本的数学问题,其中主要是奇异性,唯一性和稳定性的问题,在流体方程。 研究人员和同事从两个密切相关的角度攻击这些问题:通过分析随机偏微分方程解的统计特性;通过研究欧拉方程和相关的活动标量方程中奇点的出现。 在解决这些问题的调查呼吁从hypoellipticity的想法(在意义上的霍曼德),凸积分,拉格朗日粒子适应的方法,和朗道阻尼。 我们的目标是开发非线性,解决方案适应的方法。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Onsager's Conjecture for Admissible Weak Solutions
- DOI:10.1002/cpa.21781
- 发表时间:2019-02-01
- 期刊:
- 影响因子:3
- 作者:Buckmaster, Tristan;De Lellis, Camillo;Vicol, Vlad
- 通讯作者:Vicol, Vlad
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vlad Vicol其他文献
Vlad Vicol的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vlad Vicol', 18)}}的其他基金
Collaborative Research: Shock formation, shock development, and the propagation of singularities in fluid dynamics
合作研究:激波形成、激波发展以及流体动力学中奇点的传播
- 批准号:
2307681 - 财政年份:2023
- 资助金额:
$ 17.71万 - 项目类别:
Continuing Grant
CAREER: Nonlinear stability mechanisms and boundary layer singularities in fluid flows
职业:流体流动中的非线性稳定机制和边界层奇点
- 批准号:
1911413 - 财政年份:2018
- 资助金额:
$ 17.71万 - 项目类别:
Continuing Grant
CAREER: Nonlinear stability mechanisms and boundary layer singularities in fluid flows
职业:流体流动中的非线性稳定机制和边界层奇点
- 批准号:
1652134 - 财政年份:2017
- 资助金额:
$ 17.71万 - 项目类别:
Continuing Grant
Regularity, stability, and singular limits in fluid dynamics
流体动力学的规律性、稳定性和奇异极限
- 批准号:
1348193 - 财政年份:2013
- 资助金额:
$ 17.71万 - 项目类别:
Standard Grant
Regularity, stability, and singular limits in fluid dynamics
流体动力学的规律性、稳定性和奇异极限
- 批准号:
1211828 - 财政年份:2012
- 资助金额:
$ 17.71万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Mathematical analysis of the steady flow of a viscous fluid depending on topological properties of the domain
根据域的拓扑特性对粘性流体的稳定流动进行数学分析
- 批准号:
22KJ2953 - 财政年份:2023
- 资助金额:
$ 17.71万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Mathematical Analysis of Fluid Free Boundary Problems
无流体边界问题的数学分析
- 批准号:
2153992 - 财政年份:2022
- 资助金额:
$ 17.71万 - 项目类别:
Standard Grant
Collaborative Research: Mathematical Analysis of the Effects of Rotation, Stratification, and Dissipation in Incompressible Fluid Flows
合作研究:不可压缩流体流动中旋转、分层和耗散影响的数学分析
- 批准号:
2206491 - 财政年份:2022
- 资助金额:
$ 17.71万 - 项目类别:
Standard Grant
Collaborative Research: Mathematical Analysis of the Effects of Rotation, Stratification, and Dissipation in Incompressible Fluid Flows
合作研究:不可压缩流体流动中旋转、分层和耗散影响的数学分析
- 批准号:
2206493 - 财政年份:2022
- 资助金额:
$ 17.71万 - 项目类别:
Standard Grant
Analysis of Nonlinear Partial Differential Equations in Free Boundary Fluid Dynamics, Mathematical Biology, and Kinetic Theory
自由边界流体动力学、数学生物学和运动理论中的非线性偏微分方程分析
- 批准号:
2055271 - 财政年份:2021
- 资助金额:
$ 17.71万 - 项目类别:
Standard Grant
Mathematical Analysis of the incompressible viscous fluid with the moving contact line
不可压缩粘性流体动接触线的数学分析
- 批准号:
20K22311 - 财政年份:2020
- 资助金额:
$ 17.71万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Invention and explorer for undiscovered structure and principle in the mathematical analysis for the relation between fluid dynamics and combustion.
流体动力学与燃烧关系数学分析中未被发现的结构和原理的发明和探索。
- 批准号:
20K20284 - 财政年份:2020
- 资助金额:
$ 17.71万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Modern Mathematical Analysis for the Fluid Dynamics
流体动力学的现代数学分析
- 批准号:
18KK0072 - 财政年份:2019
- 资助金额:
$ 17.71万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Mathematical analysis of anisotropy and singular limit problems in the equations of geophysical fluid dynamics
地球物理流体动力学方程各向异性和奇异极限问题的数学分析
- 批准号:
19K03584 - 财政年份:2019
- 资助金额:
$ 17.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Analysis of Water Waves and Other Fluid Models
水波和其他流体模型的数学分析
- 批准号:
1907584 - 财政年份:2019
- 资助金额:
$ 17.71万 - 项目类别:
Standard Grant