PDEs with highly oscillatory coefficients: homogenization and beyond

具有高振荡系数的偏微分方程:均质化及其他

基本信息

  • 批准号:
    1515150
  • 负责人:
  • 金额:
    $ 13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

This research is directed to development of new mathematical tools for investigation of important phenomena where the parameters determining these phenomena and the environment change rapidly in time and/or space. Such phenomena are ubiquitous, for example, in material science, atmospheric science, combustion, biomedical imaging, and the dynamics of financial markets. In this context the rapidity is determined by the scale: it might be days or hours for atmospheric phenomena, or seconds and milliseconds for chemical processes. In mathematical terms these phenomena are modeled by partial differential equations (PDE) with oscillatory coefficients. This research will foster both qualitative and quantitative understanding of solutions of underlying PDE through mathematical analysis and computer simulations. In particular, the project will result in the design of multi-scale numerical methods to simulate heterogeneous PDEs; performance of the methods in capturing the large-scale behavior and certain micro-scale information about the fluctuations of the solutions will be evaluated.The Principal Investigator will carry out the following studies: (i) develop homogenization theory for Hamilton-Jacobi equations in dynamic random environments where the Hamiltonian and/or the diffusion coefficients are highly oscillatory in space and time; in particular, new techniques will be developed to overcome the lack of uniform Lipschitz bounds due to the time dependence of the cell problem; (ii) for linear and semi-linear elliptic equations with random potential, for which effective potential is given by averaging, characterize the limiting probability distribution of the homogenization error, and generalize the studies to the case where the differential operator involves heterogeneous coefficients; (iii) study multi-scale numerical methods and evaluate their performance in capturing not only the macro-scale property of the heterogeneous PDEs but also certain micro-scale information about the fluctuations of the solutions, and to improve such methods.
本研究旨在开发新的数学工具,用于调查重要现象,其中确定这些现象和环境的参数在时间和/或空间上迅速变化。这种现象普遍存在于材料科学、大气科学、燃烧、生物医学成像和金融市场动态等领域。在这种情况下,速度是由尺度决定的:对于大气现象来说,它可能是几天或几小时,对于化学过程来说,它可能是几秒或几毫秒。在数学术语中,这些现象由具有振荡系数的偏微分方程(PDE)建模。 这项研究将通过数学分析和计算机模拟促进对潜在PDE解决方案的定性和定量理解。 特别是,该项目将导致设计多尺度数值方法来模拟异质偏微分方程;将评估方法在捕获大尺度行为和关于解波动的某些微观信息方面的性能。首席研究员将进行以下研究:(i)在动态随机环境中发展Hamilton-Jacobi方程的均匀化理论,其中Hamiltonian和/或扩散系数在空间和时间上是高度振荡的;特别是,将开发新的技术来克服由于单元问题的时间依赖性而缺乏统一的Lipschitz界限;(ii)对于具有随机位势的线性和半线性椭圆型方程,其有效位势是通过平均给出的,刻画了均匀化误差的极限概率分布,并将研究推广到微分算子包含非齐次系数的情形;(iii)研究多尺度数值方法,并评估它们在捕捉非均匀偏微分方程的宏观尺度特性和某些微观特性方面的性能,尺度信息的波动的解决方案,并改善这种方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wenjia Jing其他文献

Strengthening of low-temperature sintered vitrified bond cBN grinding wheels by pre-oxidation of cBN abrasives
cBN磨料预氧化强化低温烧结陶瓷结合剂cBN砂轮
  • DOI:
    10.1016/j.ceramint.2016.02.070
  • 发表时间:
    2016-05
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Jianguang Bai;Wenjia Jing;Bo Wang;Jianfeng Yang
  • 通讯作者:
    Jianfeng Yang
High Order Homogenized Stokes Models Capture all Three Regimes
高阶均质斯托克斯模型捕获所有三种状态
Layer potentials for Lamé systems and homogenization of perforated elastic medium with clamped holes
Lame 系统的层势和带夹紧孔的穿孔弹性介质的均匀化
Fluoride‐mediately solvothermal synthesis and tunable photocatalytic selectivity of urchin‐like ZrO 2 hollow microspheres
氟化物介导溶剂热合成海胆状ZrO 2 空心微球并可调光催化选择性
  • DOI:
    10.1111/jace.18342
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Wenjia Jing;Baoqiang Hou;Jinxiao Wang;Qiang Zhi;Jianfeng Yang;Bo Wang
  • 通讯作者:
    Bo Wang

Wenjia Jing的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

陆地棉染色体分子指纹图谱的构建
  • 批准号:
    30471103
  • 批准年份:
    2004
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目

相似海外基金

Innovative Time Integrators for Stiff and Highly Oscillatory Systems
适用于刚性和高振荡系统的创新时间积分器
  • 批准号:
    2309821
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Computing Highly Oscillatory Integrals
计算高振荡积分
  • 批准号:
    565314-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 13万
  • 项目类别:
    University Undergraduate Student Research Awards
Computation of highly oscillatory molecular integrals
高振荡分子积分的计算
  • 批准号:
    554293-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 13万
  • 项目类别:
    University Undergraduate Student Research Awards
Computing Highly Oscillatory Integrals and application to molecular integrals
计算高振荡积分及其在分子积分中的应用
  • 批准号:
    540878-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 13万
  • 项目类别:
    University Undergraduate Student Research Awards
Computing Highly Oscillatory Integrals
计算高振荡积分
  • 批准号:
    527857-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 13万
  • 项目类别:
    University Undergraduate Student Research Awards
Multiscale Computations of Time Dependent Highly Oscillatory Systems
瞬态高振荡系统的多尺度计算
  • 批准号:
    1522792
  • 财政年份:
    2015
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Numerical Methods for Highly Oscillatory Integrals
高振荡积分的数值方法
  • 批准号:
    410928-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 13万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Multiscale Computation of Highly Oscillatory Dynamical Systems
高振荡动力系统的多尺度计算
  • 批准号:
    1217203
  • 财政年份:
    2012
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Numerical Methods for Highly Oscillatory Integrals
高振荡积分的数值方法
  • 批准号:
    410928-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 13万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Numerical Methods for Highly Oscillatory Integrals
高振荡积分的数值方法
  • 批准号:
    410928-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 13万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了