Multiscale Computation of Highly Oscillatory Dynamical Systems
高振荡动力系统的多尺度计算
基本信息
- 批准号:1217203
- 负责人:
- 金额:$ 49.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Highly oscillatory dynamical systems are computationally very challenging. Traditional numerical techniques require several function evaluations per wavelength. This is typically prohibitingly computationally costly. In earlier work the investigators have developed and analyzed numerical algorithms for efficient solution of such systems with well-defined scale separation. In this proposal the investigators tackle the harder problems where the scale separation is less clear and where the decomposition into slow and fast variables is not known. Abstractly, a full-scale model with state variables u is given. A number of slow variables, U, which include the local averages of u(t), is to be computed using a sequence of short time histories of u(t), starting from appropriate initial conditions consistently defined by U(t). Hence, the essential objectives that form this proposal are: (1) Under what conditions and in what sense do the multiscale approaches converge? What is the accuracy in the approximation of U, and what are the stability properties of the methods? (2) How can we find higher order accurate algorithms in a systematic way, when the dynamical system's right hand side can be decomposed into stiff and non-stiff parts? (3) Design such methods with a substantial reduction of computational complexity compared with existing techniques. The proposed research will delineate mathematically what it means for a dynamical system that appear to be highly oscillatory to possess slow modes. With this information, new efficient numerical algorithms can be devised and tested rigorously. The proposed research will establish a mathematical link between a variety of averaging theories and new effective numerical integrators and filtering techniques.The proposed research is at the very mathematical and computational heart of many important applications in science and engineering, from astrophysics to quantum mechanics. In these applications there are rapid oscillations as, for example, vibrations of atoms that affects the overall system on a much slower time scale. This is traditionally difficult to simulate with reasonable computational cost. The theories and algorithms developed in this proposal make such simulations practical and directly relate to important atomistic simulations that are used in place of actual physical experiments. They will have direct consequences, for example, in molecular biology for understanding drug functions at the cellular level, and also in the study of material properties and unstable events such as the formation and propagation of cracks, which may affect electronic components as well as the structural safety of airplanes.
高度振荡的动力系统在计算上是非常具有挑战性的。传统的数值方法需要对每个波长进行多次函数评估。这通常是令人望而却步的计算成本。在早期的工作中,研究人员已经开发和分析了有效解这类具有明确尺度分离的系统的数值算法。在这项建议中,研究人员解决了较困难的问题,即尺度分离不太清楚,以及分解成慢变量和快变量的情况未知。抽象地给出了一个状态变量为u的全尺度模型。从U(T)始终如一地定义的适当初始条件开始,使用u(T)的短时间历史序列来计算包括u(T)的局部平均值的多个慢变量U。因此,形成这一提议的基本目标是:(1)多尺度方法在什么条件下以及在什么意义上收敛?当动力系统的右端可以分解为刚性部分和非刚性部分时,如何才能系统地找到高阶精度算法?(3)与现有技术相比,设计这种方法的计算复杂度有很大的降低。这项拟议的研究将从数学上描绘出,对于一个看起来高度振荡的动力系统来说,拥有慢模式意味着什么。有了这些信息,就可以设计出新的有效的数值算法,并进行严格的测试。这项拟议的研究将在各种平均理论和新的有效的数值积分器和滤波技术之间建立数学联系。拟议的研究处于从天体物理到量子力学的许多重要科学和工程应用的数学和计算核心。在这些应用中,存在快速的振荡,例如,在较慢的时间尺度上影响整个系统的原子振动。这在传统上很难用合理的计算成本进行模拟。该方案中开发的理论和算法使这种模拟变得实用,并与重要的原子模拟直接相关,这些模拟用于代替实际的物理实验。例如,它们将对在细胞水平上了解药物功能的分子生物学产生直接影响,还将在材料特性和不稳定事件的研究中产生直接影响,例如可能影响电子元件和飞机结构安全的裂纹的形成和扩展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bjorn Engquist其他文献
Optimal transport for elastic source inversion
弹性源反演的最优输运
- DOI:
10.1190/image2023-3916500.1 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Tyler Masthay;Bjorn Engquist - 通讯作者:
Bjorn Engquist
Homogenization Model for Aberrant Crypt Foci
异常隐窝病灶的均质化模型
- DOI:
10.1137/140967660 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
I. Figueiredo;C. Leal;G. Romanazzi;Bjorn Engquist - 通讯作者:
Bjorn Engquist
Model recovery below reflectors by optimal-transport FWI
通过最佳传输 FWI 进行反射器下方的模型恢复
- DOI:
10.1190/segam2018-2998611.1 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yunan Yang;Bjorn Engquist - 通讯作者:
Bjorn Engquist
A MULTISCALE METHOD FOR HIGHLY OSCILLATORY ORDINARY DIFFERENTIAL EQUATIONS WITH RESONANCE IN MEMORY OF GERMUND DAHLQUIST
纪念Germund Dahlquist的高振荡常微分方程的多尺度方法
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Gil Ariel;Bjorn Engquist;Richard Tsai - 通讯作者:
Richard Tsai
In Memory of Andrew J. Majda Bjorn Engquist, Panagiotis Souganidis, Samuel N. Stechmann, and Vlad Vicol
纪念 Andrew J. Majda Bjorn Engquist、Panagiotis Souganidis、Samuel N. Stechmann 和 Vlad Vicol
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Bjorn Engquist;Panagiotis Souganidis;S. Stechmann;V. Vicol - 通讯作者:
V. Vicol
Bjorn Engquist的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bjorn Engquist', 18)}}的其他基金
Machine Learning for Effective Computation in Multiscale Hyperbolic Systems
用于多尺度双曲系统中有效计算的机器学习
- 批准号:
2208504 - 财政年份:2022
- 资助金额:
$ 49.72万 - 项目类别:
Standard Grant
A New Multiscale Framework for Hyperbolic Problems
双曲线问题的新多尺度框架
- 批准号:
1913209 - 财政年份:2019
- 资助金额:
$ 49.72万 - 项目类别:
Standard Grant
Parallel Multiscale Algorithms for Dynamical Systems
动力系统的并行多尺度算法
- 批准号:
1620396 - 财政年份:2016
- 资助金额:
$ 49.72万 - 项目类别:
Standard Grant
Multiscale Computations of Time Dependent Highly Oscillatory Systems
瞬态高振荡系统的多尺度计算
- 批准号:
1522792 - 财政年份:2015
- 资助金额:
$ 49.72万 - 项目类别:
Standard Grant
Multiscale Algorithms for Wave Propagation
波传播的多尺度算法
- 批准号:
1016577 - 财政年份:2010
- 资助金额:
$ 49.72万 - 项目类别:
Standard Grant
Multiscale Computations of Stiff Oscillatory Ordinary Differential Equations
刚性振荡常微分方程的多尺度计算
- 批准号:
0714612 - 财政年份:2007
- 资助金额:
$ 49.72万 - 项目类别:
Continuing Grant
相似国自然基金
基于分位数g-computation的多污染物联合空气质量健康指数构建及预测效果评价
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于g-computation控制纵向数据未测混杂因素的因果推断模型构建及应用研究
- 批准号:81903416
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Computation of highly oscillatory molecular integrals
高振荡分子积分的计算
- 批准号:
554293-2020 - 财政年份:2020
- 资助金额:
$ 49.72万 - 项目类别:
University Undergraduate Student Research Awards
Highly-reliable IoT platform based on autonomous collaboration of edge cooperation and secure computation
基于边缘协作和安全计算自主协作的高可靠物联网平台
- 批准号:
19H04101 - 财政年份:2019
- 资助金额:
$ 49.72万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a highly integrated circuit using DNA and a demonstration test of the parallel computation using a complementary DNA as an operator
使用DNA的高度集成电路的开发以及使用互补DNA作为算子的并行计算的演示测试
- 批准号:
17K06395 - 财政年份:2017
- 资助金额:
$ 49.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Highly massive parallel evolutionary computation for designing artificial genetic circuits and microbe networks
用于设计人工遗传电路和微生物网络的高度大规模并行进化计算
- 批准号:
17H01796 - 财政年份:2017
- 资助金额:
$ 49.72万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Rheological evaluation of highly viscous slurry by using a numerical computation
利用数值计算评估高粘度浆料的流变性
- 批准号:
25630428 - 财政年份:2013
- 资助金额:
$ 49.72万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
On the Study of Highly Reliable Symbolic-Numeric Computation for Algebraic Problems with Empirical Data
经验数据代数问题高可靠符号数值计算的研究
- 批准号:
21500026 - 财政年份:2009
- 资助金额:
$ 49.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference on Highly Ocillatory Problems: Computation, Theory and Applications.
高振荡问题会议:计算、理论和应用。
- 批准号:
0702979 - 财政年份:2007
- 资助金额:
$ 49.72万 - 项目类别:
Standard Grant
Collaborative Research: Highly Structured Models and Statistical Computation in High-Energy Astrophysics
合作研究:高能天体物理中的高度结构化模型和统计计算
- 批准号:
0405953 - 财政年份:2004
- 资助金额:
$ 49.72万 - 项目类别:
Standard Grant
Collaborative Research: Highly Structured Models and Statistical Computation in High-Energy Astrophysics
合作研究:高能天体物理中的高度结构化模型和统计计算
- 批准号:
0406085 - 财政年份:2004
- 资助金额:
$ 49.72万 - 项目类别:
Standard Grant
SBIR Phase I: Highly Accurate Reconstruction Module For Multidisciplinary Computation
SBIR第一期:用于多学科计算的高精度重建模块
- 批准号:
0232255 - 财政年份:2003
- 资助金额:
$ 49.72万 - 项目类别:
Standard Grant














{{item.name}}会员




