Recent Advances in Kahler Geometry Conference

卡勒几何会议的最新进展

基本信息

  • 批准号:
    1515246
  • 负责人:
  • 金额:
    $ 4.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-05-15 至 2017-04-30
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS 1515246, Principal Investigator: Ioana SuvainaThe conference "Recent Advances in Kahler Geometry" will be held May 18-22, 2015 at the Vanderbilt University. The main objective of the conference is to bring together leading experts in the separate but related fields of differential geometry, geometric analysis and algebraic geometry, to present recent results and future directions of research in the field. The conference is organized in conjunction with the 30th Shanks Lecture Series. Professor S-T. Yau (Harvard University) will deliver the 2014 Shanks Lecture. The conference will attract mathematicians from underrepresented groups as well as graduate students and young researchers who will greatly benefit from the wide spectrum of topics to be presented at the conference.Kahler geometry is an area with deep roots and very rapid and diverse advances. Remarkable progress has been made recently in different directions such as the study of Kahler-Einstein metrics on Fano manifolds, and complete Calabi-Yau manifolds with prescribed asymptotical behavior. Another very active area of research concerns the study of extremal Kahler metrics and their link with algebraic-geometric notions of stability on polarized manifolds. The topics of the presentations include, but are not limited to, the following areas: Kahler-Einstein metrics, complete Calabi-Yau manifolds with prescribed asymptotical behavior, extremal Kahler metrics, moduli space of Kahler metrics, Kahler Ricci flow, Hermitian manifolds. More details about the conference, as well as the list of speakers, are available at the conference website, at: http://www.math.vanderbilt.edu/kahlergeometry
AbstractAward:DMS 1515246,首席研究员:Ioana Suvaina会议“卡勒几何的最新进展”将于2015年5月18日至22日在范德比尔特大学举行。会议的主要目的是汇集微分几何,几何分析和代数几何等独立但相关领域的领先专家,介绍该领域的最新研究成果和未来研究方向。本次会议是与第30届桑克斯系列讲座一起举办的。教授丘(哈佛大学)将提供2014年尚克斯讲座。会议将吸引来自代表性不足的群体的数学家以及研究生和年轻的研究人员,他们将从会议上提出的广泛主题中受益匪浅。卡勒几何是一个有着深厚根基和非常迅速和多样化进步的领域。近年来,在不同的方向上取得了显著的进展,如Fano流形上的Kahler-Einstein度量的研究,以及具有规定渐近行为的完备Calabi-Yau流形。另一个非常活跃的研究领域涉及极值Kahler度量的研究及其与代数几何概念的稳定性极化流形。 演讲的主题包括但不限于以下领域:Kahler-Einstein度量,具有规定渐近行为的完整Calabi-Yau流形,极值Kahler度量,Kahler度量的模空间,Kahler Ricci流,Hermitian流形。 有关会议的更多详细信息以及发言者名单,请访问会议网站:http://www.math.vanderbilt.edu/kahlergeometry

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ioana Suvaina其他文献

Ioana Suvaina的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ioana Suvaina', 18)}}的其他基金

Workshop on Complex Differential Geometry
复微分几何研讨会
  • 批准号:
    1804586
  • 财政年份:
    2018
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
Moduli Space of Canonical Metrics on Four-Manifolds
四流形上规范度量的模空间
  • 批准号:
    1710970
  • 财政年份:
    2017
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
Canonical metrics on four dimensional manifolds, and orbifold structures
四维流形和轨道结构的规范度量
  • 批准号:
    1309029
  • 财政年份:
    2013
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
Canonical metrics on four dimensional varieties
四维变量的规范度量
  • 批准号:
    1007114
  • 财政年份:
    2010
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Advances to the EMT Modeling and Simulation of Restoration Processes for Future Grids
职业:未来电网恢复过程的 EMT 建模和仿真的进展
  • 批准号:
    2338621
  • 财政年份:
    2024
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Continuing Grant
Advances in rational operations in free analysis
自由分析中理性运算的进展
  • 批准号:
    2348720
  • 财政年份:
    2024
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
REU Site: Recent Advances in Natural Language Processing
REU 网站:自然语言处理的最新进展
  • 批准号:
    2349452
  • 财政年份:
    2024
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
Conference: PDE in Moab: Advances in Theory and Application
会议:摩押偏微分方程:理论与应用的进展
  • 批准号:
    2350128
  • 财政年份:
    2024
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
CAREER: Towards Watersheds as Water Treatment Plants through Advances in Distributed Sensing and Control
职业:通过分布式传感和控制的进步将流域打造为水处理厂
  • 批准号:
    2340176
  • 财政年份:
    2024
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
  • 批准号:
    2340527
  • 财政年份:
    2024
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Continuing Grant
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
  • 批准号:
    2348384
  • 财政年份:
    2024
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
  • 批准号:
    2414688
  • 财政年份:
    2024
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了