Canonical metrics on four dimensional manifolds, and orbifold structures
四维流形和轨道结构的规范度量
基本信息
- 批准号:1309029
- 负责人:
- 金额:$ 12.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS 1309029, Principal Investigator: Ioana Suvaina The main goal of the proposed research is the study of Riemannian geometry of orbifold spaces in dimension four, and how they appear as boundary points of the space of canonical metrics on smooth manifolds. The principal investigator proposes to analyze a family of problems addressing the study of the space of constant scalar curvature Kaehler surfaces. The projects proposed concern both problems on the local development of singularities, but also the understanding of compact smooth spaces. The principal investigator aims to establish connections between the algebraic geometry aspects of the problems and their counterparts in Kaehler geometry. The resolution of these projects will provide constructions of new examples of constant scalar curvature Kaehler surfaces, or constant scalar curvature almost Kaehler 4-manifolds. In another direction, the principal investigator proposes a series of projects on the relations between estimates of the curvature components, the topological and differential invariants of a 4-orbifold, and existence or non-existence of Einstein metrics. The main approach is via the Seiberg-Witten theory.The study of the four dimensional spaces has a long history both in mathematics and physics being motivated by the study of the space-time model. In mathematics, there is strong evidence that the four dimensional spaces are very special as they admit infinitely many smooth structures. This research program plans to use techniques from different fields in mathematics: differential topology, Riemannian and Kaehler geometry, and algebraic geometry to study four dimensional spaces. In particular, the principal investigator aims to establish new connections among these various fields.
AbstractAward:DMS 1309029,首席研究员:Ioana Suvaina拟议研究的主要目标是研究四维orbifold空间的黎曼几何,以及它们如何作为光滑流形上的正则度量空间的边界点出现。主要研究者提出分析一个家庭的问题,解决研究的空间常数标量曲率Kaehler曲面。所提出的项目既涉及奇点的局部发展问题,也涉及对紧致光滑空间的理解。首席研究员的目的是建立之间的联系代数几何方面的问题和他们的同行在Kaehler几何。这些项目的决议将提供建设的新的例子常数标量曲率Kaehler表面,或常数标量曲率几乎Kaehler 4-流形。在另一个方向上,主要研究者提出了一系列关于曲率分量的估计,4-orbifold的拓扑和微分不变量以及爱因斯坦度量的存在或不存在之间的关系的项目。四维空间的研究在数学和物理学上都有很长的历史,而时空模型的研究是四维空间研究的动力。在数学中,有强有力的证据表明,四维空间是非常特殊的,因为它们允许无限多的光滑结构。该研究计划使用数学不同领域的技术:微分拓扑、Riemannian和Kaehler几何以及代数几何来研究四维空间。特别是,首席研究员旨在建立这些不同领域之间的新联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ioana Suvaina其他文献
Ioana Suvaina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ioana Suvaina', 18)}}的其他基金
Workshop on Complex Differential Geometry
复微分几何研讨会
- 批准号:
1804586 - 财政年份:2018
- 资助金额:
$ 12.1万 - 项目类别:
Standard Grant
Moduli Space of Canonical Metrics on Four-Manifolds
四流形上规范度量的模空间
- 批准号:
1710970 - 财政年份:2017
- 资助金额:
$ 12.1万 - 项目类别:
Standard Grant
Recent Advances in Kahler Geometry Conference
卡勒几何会议的最新进展
- 批准号:
1515246 - 财政年份:2015
- 资助金额:
$ 12.1万 - 项目类别:
Standard Grant
Canonical metrics on four dimensional varieties
四维变量的规范度量
- 批准号:
1007114 - 财政年份:2010
- 资助金额:
$ 12.1万 - 项目类别:
Standard Grant
相似海外基金
New metrics to measure and track fauna community condition in Australia
衡量和跟踪澳大利亚动物群落状况的新指标
- 批准号:
LP230100179 - 财政年份:2024
- 资助金额:
$ 12.1万 - 项目类别:
Linkage Projects
Canonical Kahler metrics and complex Monge-Ampere equations
规范卡勒度量和复杂的 Monge-Ampere 方程
- 批准号:
2303508 - 财政年份:2023
- 资助金额:
$ 12.1万 - 项目类别:
Standard Grant
Research on various canonical Kaehler metrics by means of energy functionals and non-Archimedean metrics
利用能量泛函和非阿基米德度量研究各种典型凯勒度量
- 批准号:
23K03120 - 财政年份:2023
- 资助金额:
$ 12.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Metrics for Brain Controlled Communication: A comprehensive review of clinical outcome assessments for communication brain computer interfaces in amyotrophic lateral sclerosis
脑控制通信指标:肌萎缩侧索硬化症通信脑机接口临床结果评估的全面综述
- 批准号:
10848139 - 财政年份:2023
- 资助金额:
$ 12.1万 - 项目类别:
IMR: MM-1C: Methods and Metrics for IPv6 Internet Scanning
IMR:MM-1C:IPv6 互联网扫描的方法和指标
- 批准号:
2319315 - 财政年份:2023
- 资助金额:
$ 12.1万 - 项目类别:
Continuing Grant
Testing the accuracy of eye tracking as a screening tool for ASD in the general population
测试眼动追踪作为普通人群自闭症谱系障碍筛查工具的准确性
- 批准号:
10638066 - 财政年份:2023
- 资助金额:
$ 12.1万 - 项目类别:
Assessing Diffusion MRI Metrics for Detecting Changes of Synaptic Density in Alzheimer's Disease
评估弥散 MRI 指标以检测阿尔茨海默病突触密度的变化
- 批准号:
10739911 - 财政年份:2023
- 资助金额:
$ 12.1万 - 项目类别:
Geometry of Wasserstein and Transportation Cost Metrics
Wasserstein 的几何形状和运输成本指标
- 批准号:
2247582 - 财政年份:2023
- 资助金额:
$ 12.1万 - 项目类别:
Continuing Grant














{{item.name}}会员




