Quantitative Cell Geometry - Defining Cell State at the Organelle Level
定量细胞几何学 - 在细胞器水平定义细胞状态
基本信息
- 批准号:1515456
- 负责人:
- 金额:$ 90万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-15 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cells are complex machines filled with molecules that can perform simple logic functions like the circuits inside a computer. Many cells can perform complex behaviors such as engulfing other cells, movement towards a source of food, and remembering past events. Even though most cellular components are believed to be discovered, it is still unclear how the molecules in a cell work together to perform relatively complex actions. This project seeks to solve the problem by applying concepts from theoretical computer science to understand how the cell switches from one activity to another. This will open up new possibilities for re-engineering cells by reprogramming their internal controls. This research program will create novel educational and outreach opportunities based on exposing students from a variety of scientific backgrounds, as well as members of the public with interests in electronics and computer hobbies, to the idea that cells can be viewed as computing machines; therefore awareness of quantitative cell biology among the next generation of engineering students will increase. While general understanding of the molecular biology of cells is constantly increasing, it has proven difficult to integrate this molecular scale information into a global view of how cells make decisions and perform complex behaviors like migration, phagocytosis, and division. The goal of this project is to connect the huge gap in complexity and detail from the molecular scale to the level of cell behavior by using concepts from computer science. In computer science, the highly complex details of electronic circuitry can often be understood, analyzed, and designed by using abstract models in which a complex system is represented by a finite set of states, allowing behavior to be represented by transitions between states. Such models are called finite state automata and they are the most fundamental representation of a computing device. In this project cells are described as finite state automata, by using organelle size measurements to identify and define distinct states. It is hypothesized that an organelle-level state description will allow for the reduction of the dimensionality of the state space from millions of dimensions corresponding to individual molecules in the cell down to a much smaller number of dimensions based on organelle morphological measurements that are readily observable in living cells. Large numbers of cells will be imaged at high resolution, numerical descriptors of each organelle will be described, and a state space for cellular organization will be defined using statistically rigorous methods to define states and state transitions. The investigators will explore how chemical and mechanical inputs to the cell drive transitions within this state space, thus providing a way to view the cell as a type of finite-state automaton. Such a representation will also provide a framework for synthetic biology applications in which the regulatory pathways that determine state transitions could be re-wired to produce different behaviors, essentially turning a single cell into a programmable microdevice. The conceptual framework of the cell as a decision-making computational device will be harnessed to present outreach exhibits at Maker Faires, which are an ongoing series of events that bring together electronics, computer, and crafts hobbyists. This project is co-funded by the program in Cellular Dynamics and Function in the division of Molecular and Cellular Biosciences in the Directorate of Biological Sciences and the programs in Statistics and Mathematical Biology in the division of Mathematical Sciences in the Directorate of Mathematics and Physical Sciences.
细胞是充满分子的复杂机器,可以执行简单的逻辑功能,就像计算机内部的电路一样。许多细胞可以执行复杂的行为,如吞噬其他细胞,向食物源移动,并记住过去的事件。尽管大多数细胞成分被认为已经被发现,但仍然不清楚细胞中的分子如何协同工作以执行相对复杂的行动。该项目旨在通过应用理论计算机科学的概念来理解细胞如何从一种活动切换到另一种活动来解决这个问题。这将为通过重新编程细胞的内部控制来重新设计细胞开辟新的可能性。这项研究计划将创造新的教育和推广机会,让来自各种科学背景的学生以及对电子和计算机爱好感兴趣的公众了解细胞可以被视为计算机器的想法;因此,下一代工程专业学生对定量细胞生物学的认识将增加。 虽然对细胞分子生物学的一般理解不断增加,但事实证明,很难将这种分子尺度的信息整合到细胞如何做出决定和执行复杂行为(如迁移,吞噬和分裂)的全局视图中。该项目的目标是通过使用计算机科学的概念,将分子尺度上的复杂性和细节的巨大差距与细胞行为水平联系起来。 在计算机科学中,电子电路的高度复杂的细节通常可以通过使用抽象模型来理解,分析和设计,其中复杂系统由有限的状态集表示,允许行为由状态之间的转换表示。这种模型被称为有限状态自动机,它们是计算设备的最基本表示。在这个项目中,细胞被描述为有限状态自动机,通过使用细胞器尺寸测量来识别和定义不同的状态。假设细胞器水平的状态描述将允许状态空间的维度从对应于细胞中的单个分子的数百万个维度降低到基于在活细胞中容易观察到的细胞器形态测量的小得多的维度。大量的细胞将在高分辨率下成像,每个细胞器的数字描述符将被描述,并将使用统计上严格的方法来定义状态和状态转换来定义细胞组织的状态空间。研究人员将探索细胞的化学和机械输入如何驱动该状态空间内的转换,从而提供一种将细胞视为有限状态自动机的方法。这种表示还将为合成生物学应用提供一个框架,其中决定状态转换的调节途径可以重新连接以产生不同的行为,基本上将单个细胞转变为可编程的微器件。细胞作为一个决策计算设备的概念框架将被利用来在Maker Faires展示外展展览,这是一个持续的系列活动,汇集了电子,计算机和手工艺爱好者。该项目由生物科学理事会分子和细胞生物科学部门的细胞动力学和功能计划以及数学和物理科学理事会数学科学部门的统计学和数学生物学计划共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wallace Marshall其他文献
Psychiatric evaluation of afferent stimuli and learning processes
- DOI:
10.1007/bf01563464 - 发表时间:
1939-06-01 - 期刊:
- 影响因子:2.900
- 作者:
Wallace Marshall - 通讯作者:
Wallace Marshall
<strong>Regulation of airway shape by SPROUTY-mediated control of oriented cell division</strong>
- DOI:
10.1016/j.ydbio.2010.05.281 - 发表时间:
2010-08-01 - 期刊:
- 影响因子:
- 作者:
Nan Tang;Wallace Marshall;Martin McMahon;Ross J. Metzger;Gail R. Martin - 通讯作者:
Gail R. Martin
Conserved Dynamic Characteristics of Mitochondrial Networks
- DOI:
10.1016/j.bpj.2017.11.3575 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Greyson Lewis;Wallace Marshall - 通讯作者:
Wallace Marshall
Integrated whole-cell geometric modeling of organelle interactions in <em>S. cerevisiae</em>
- DOI:
10.1016/j.bpj.2021.11.2108 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Mary Mirvis;Wallace Marshall - 通讯作者:
Wallace Marshall
Motility and Behavior of <em>S. coerleus</em> during Regeneration
- DOI:
10.1016/j.bpj.2020.11.1555 - 发表时间:
2021-02-12 - 期刊:
- 影响因子:
- 作者:
Janet Y. Sheung;Megan Otsuka;Athena Lin;Gabriella Seifert;Wallace Marshall - 通讯作者:
Wallace Marshall
Wallace Marshall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wallace Marshall', 18)}}的其他基金
Collaborative Research: Biomechanical mechanisms conferring wound resilience in single-celled organisms
合作研究:赋予单细胞生物伤口复原力的生物力学机制
- 批准号:
2317444 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering the Biophysical Mechanisms of Single-cell Wound-healing
合作研究:揭示单细胞伤口愈合的生物物理机制
- 批准号:
1938102 - 财政年份:2020
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Quantitative Analysis of Single Cell Learning
单细胞学习的定量分析
- 批准号:
2012647 - 财政年份:2020
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Ideas Lab: Synthetic and Artificial Cells
创意实验室:合成和人造细胞
- 批准号:
1855401 - 财政年份:2018
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: Investigation of Wound-healing at the Single Cell Level using Microfluidics-based Microsurgery
合作研究:使用基于微流体的显微外科技术研究单细胞水平的伤口愈合
- 批准号:
1515494 - 财政年份:2015
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Building a Community to Pursue Quantitative Cell Biology
建立一个追求定量细胞生物学的社区
- 批准号:
1411898 - 财政年份:2014
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Flagellar Length Control in Chlamydomonas: The Role of Intraflagellar Transport and Turnover
衣藻中的鞭毛长度控制:鞭毛内运输和周转的作用
- 批准号:
0416310 - 财政年份:2004
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
相似国自然基金
全细胞疫苗Cell@MnO2的乳腺癌术后免疫响应监测与放射免疫治疗研究
- 批准号:QN25H220002
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
染色体外环状DNA以cell-in-cell途径促进基因横向传递和扩增的研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
GMFG/F-actin/cell adhesion 轴驱动 EHT 在造
血干细胞生成中的作用及机制研究
- 批准号:TGY24H080011
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于In-cell NMR策略对“舟楫之剂”桔梗中引经药效物质的快速发现研究
- 批准号:82305053
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向Cell-Free网络的协同虚拟化与动态传输
- 批准号:62371367
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
Cell-in-cell促进曲妥珠单抗耐药乳腺癌细胞转移的作用与分子机制
- 批准号:82373069
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于Multi-Pass Cell的高功率皮秒激光脉冲非线性压缩关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于定点突变膜受体Cell-free合成生物色谱新方法的PDGFRβ抑制剂筛选和结合位点分析
- 批准号:82273886
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
FLRT3抑制异质性cell-in-cell结构形成机制及细胞免疫调节作用研究
- 批准号:
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
基于Cell-SELEX 的磁珠富集技术与LAMP 联合构建的梅毒螺旋体核酸检测方法及其临床应用
- 批准号:2021JJ30609
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Shape Shifting Stomata: The Role of Geometry in Plant Cell Function
变形气孔:几何形状在植物细胞功能中的作用
- 批准号:
BB/T005165/1 - 财政年份:2020
- 资助金额:
$ 90万 - 项目类别:
Research Grant
Pelvic Organ Prolapse Mesh Replacement: Evaluation of Mesh Elasticity and Pore Geometry on Cell Responses and Mesh Degradation
盆腔器官脱垂网片置换:评估网片弹性和孔隙几何形状对细胞反应和网片降解的影响
- 批准号:
2038515 - 财政年份:2020
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Shape Shifting Stomata: The Role of Geometry in Plant Cell Function
变形气孔:几何形状在植物细胞功能中的作用
- 批准号:
BB/T005041/1 - 财政年份:2020
- 资助金额:
$ 90万 - 项目类别:
Research Grant
OPUS: MCS Functional solutions to cell-size evolution's geometry problem
OPUS:细胞尺寸演化几何问题的 MCS 功能解决方案
- 批准号:
1911585 - 财政年份:2019
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Multi length-scale characterisation of microstructure/geometry interactions for tailoring properties of open-cell Al alloy foams
微观结构/几何相互作用的多长度尺度表征,用于定制开孔铝合金泡沫的性能
- 批准号:
434241711 - 财政年份:2019
- 资助金额:
$ 90万 - 项目类别:
Research Grants
CAREER: Vascular Stent Geometry Dictates Endothelial Cell Wound Healing and Phenotype
职业:血管支架几何形状决定内皮细胞伤口愈合和表型
- 批准号:
1842308 - 财政年份:2019
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
The role of cell geometry, growth and mechanics in plant cell division.
细胞几何形状、生长和力学在植物细胞分裂中的作用。
- 批准号:
357135584 - 财政年份:2017
- 资助金额:
$ 90万 - 项目类别:
Research Units