Collaborative Research: Biomechanical mechanisms conferring wound resilience in single-celled organisms
合作研究:赋予单细胞生物伤口复原力的生物力学机制
基本信息
- 批准号:2317444
- 负责人:
- 金额:$ 13.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Wound resilience is a common trait in biological systems necessary for homeostasis and survival. This project will identify wound resilience principles in the free-living single-celled organism Stentor coeruleus, known to display robust wound healing capacity from drastic mechanical wounds. This project has the potential to lay the foundation for engineering new functions—wound resilience—in synthetic cells and soft micro-robots, and will make the technologies more robust for industrial applications. The collaboration between the three investigators provides a unique opportunity for training and workforce development at the interface of cell biology, engineering, and mathematical modeling. Results from this work will be incorporated into graduate courses and social media to raise public interest in non-model organisms. All investigators will continue to recruit underrepresented minorities to STEM via outreach targeted to K-12 students and participation in the Bay Area Science Festival and the Maker Faire held yearly in San Francisco, CA.The overall goal of this project is to investigate how Stentor coeruleus employs biomechanical mechanisms both upstream of wounding for wound prevention, and downstream of wounding for robust healing from mechanical wounds that cause an opening in the plasma membrane. The rationales to focus on Stentor are: 1) It is a free-living unicellular organism found in environments that can be subject to high mechanical stresses due to natural flows or predation. In principle, these cells must possess properties that prevent frequent wounding and allow healing if wounding occurs. 2) Its wound healing capacity is more robust than most other cells. It is capable of recovering robustly from drastic wounds and regenerating from cell fragments as small as 1/27th of the original cell size in 24 hours. This property allows the perturbation of the wounding conditions and the measurement of their effect on the repair process without immediately causing cell death, thereby providing a robust platform for probing the self-repair mechanism. 3) High-throughput gene knockdown and wounding experiments have been developed. Stentor’s genome has been sequenced, and tools for molecular manipulation of Stentor gene expression have been developed to pave the way to a molecular understanding of Stentor wound repair. This project will test the role of the cytoskeleton in conferring wound resistance to the cell, and the role of large-scale mechanical force generation in complementing biochemical healing modes to close wounds of increasing severity. The project combines cell biology, microfluidics, and mechanobiology modeling, involving the use of microfluidics to generate precise flow conditions to inflict wounds on cells in a high throughput manner, and the development of mathematical models integrating biochemical and mechanical processes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
创伤复原力是生物系统中的一个共同特征,对于稳态和生存是必要的。该项目将确定自由生活的单细胞生物Stentor coeruleus中的伤口弹性原则,已知其在剧烈的机械伤口中显示出强大的伤口愈合能力。该项目有可能为在合成细胞和软微机器人中设计新功能(伤口顺应性)奠定基础,并将使这些技术在工业应用中更加强大。三位研究人员之间的合作为细胞生物学,工程和数学建模的界面提供了培训和劳动力发展的独特机会。这项工作的结果将被纳入研究生课程和社交媒体,以提高公众对非模式生物的兴趣。所有研究人员将继续通过针对K-12学生的外展活动以及参加每年在加利福尼亚州旧金山弗朗西斯科举行的湾区科学节和Maker Faire,招募代表性不足的少数民族参加STEM。以及伤口下游,用于从导致质膜开口的机械伤口中稳健愈合。关注Stentor的基本原理是:1)它是一种自由生活的单细胞生物,存在于自然流动或捕食导致的高机械应力环境中。原则上,这些细胞必须具有防止频繁受伤并在受伤时允许愈合的特性。2)它的伤口愈合能力比大多数其他细胞更强大。它能够从剧烈的伤口中恢复,并在24小时内从原始细胞大小的1/27的细胞碎片中再生。这种特性允许扰动创伤条件并测量其对修复过程的影响,而不会立即导致细胞死亡,从而为探索自我修复机制提供了一个强大的平台。3)已经开发了高通量基因敲除和损伤实验。Stentor的基因组已被测序,并已开发出分子操纵Stentor基因表达的工具,为Stentor伤口修复的分子理解铺平了道路。该项目将测试细胞骨架在赋予细胞创伤抵抗力方面的作用,以及大规模机械力产生在补充生化愈合模式以闭合日益严重的伤口方面的作用。该项目结合了细胞生物学,微流体学和机械生物学建模,涉及使用微流体来产生精确的流动条件,以高通量的方式对细胞造成创伤,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查进行评估来支持的搜索.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wallace Marshall其他文献
Psychiatric evaluation of afferent stimuli and learning processes
- DOI:
10.1007/bf01563464 - 发表时间:
1939-06-01 - 期刊:
- 影响因子:2.900
- 作者:
Wallace Marshall - 通讯作者:
Wallace Marshall
<strong>Regulation of airway shape by SPROUTY-mediated control of oriented cell division</strong>
- DOI:
10.1016/j.ydbio.2010.05.281 - 发表时间:
2010-08-01 - 期刊:
- 影响因子:
- 作者:
Nan Tang;Wallace Marshall;Martin McMahon;Ross J. Metzger;Gail R. Martin - 通讯作者:
Gail R. Martin
Conserved Dynamic Characteristics of Mitochondrial Networks
- DOI:
10.1016/j.bpj.2017.11.3575 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Greyson Lewis;Wallace Marshall - 通讯作者:
Wallace Marshall
Integrated whole-cell geometric modeling of organelle interactions in <em>S. cerevisiae</em>
- DOI:
10.1016/j.bpj.2021.11.2108 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Mary Mirvis;Wallace Marshall - 通讯作者:
Wallace Marshall
Motility and Behavior of <em>S. coerleus</em> during Regeneration
- DOI:
10.1016/j.bpj.2020.11.1555 - 发表时间:
2021-02-12 - 期刊:
- 影响因子:
- 作者:
Janet Y. Sheung;Megan Otsuka;Athena Lin;Gabriella Seifert;Wallace Marshall - 通讯作者:
Wallace Marshall
Wallace Marshall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wallace Marshall', 18)}}的其他基金
Collaborative Research: Uncovering the Biophysical Mechanisms of Single-cell Wound-healing
合作研究:揭示单细胞伤口愈合的生物物理机制
- 批准号:
1938102 - 财政年份:2020
- 资助金额:
$ 13.93万 - 项目类别:
Standard Grant
Quantitative Analysis of Single Cell Learning
单细胞学习的定量分析
- 批准号:
2012647 - 财政年份:2020
- 资助金额:
$ 13.93万 - 项目类别:
Standard Grant
Ideas Lab: Synthetic and Artificial Cells
创意实验室:合成和人造细胞
- 批准号:
1855401 - 财政年份:2018
- 资助金额:
$ 13.93万 - 项目类别:
Standard Grant
Collaborative Research: Investigation of Wound-healing at the Single Cell Level using Microfluidics-based Microsurgery
合作研究:使用基于微流体的显微外科技术研究单细胞水平的伤口愈合
- 批准号:
1515494 - 财政年份:2015
- 资助金额:
$ 13.93万 - 项目类别:
Standard Grant
Quantitative Cell Geometry - Defining Cell State at the Organelle Level
定量细胞几何学 - 在细胞器水平定义细胞状态
- 批准号:
1515456 - 财政年份:2015
- 资助金额:
$ 13.93万 - 项目类别:
Continuing Grant
Building a Community to Pursue Quantitative Cell Biology
建立一个追求定量细胞生物学的社区
- 批准号:
1411898 - 财政年份:2014
- 资助金额:
$ 13.93万 - 项目类别:
Standard Grant
Flagellar Length Control in Chlamydomonas: The Role of Intraflagellar Transport and Turnover
衣藻中的鞭毛长度控制:鞭毛内运输和周转的作用
- 批准号:
0416310 - 财政年份:2004
- 资助金额:
$ 13.93万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Cellular and Biomechanical Mechanisms of Rapid Stomatal Dynamics in Grasses
合作研究:草类快速气孔动力学的细胞和生物力学机制
- 批准号:
2327732 - 财政年份:2023
- 资助金额:
$ 13.93万 - 项目类别:
Standard Grant
Collaborative Research: Biomechanical mechanisms conferring wound resilience in single-celled organisms
合作研究:赋予单细胞生物伤口复原力的生物力学机制
- 批准号:
2317442 - 财政年份:2023
- 资助金额:
$ 13.93万 - 项目类别:
Standard Grant
Collaborative Research: Biomechanical mechanisms conferring wound resilience in single-celled organisms
合作研究:赋予单细胞生物伤口复原力的生物力学机制
- 批准号:
2317443 - 财政年份:2023
- 资助金额:
$ 13.93万 - 项目类别:
Standard Grant
Collaborative Research: Cellular and Biomechanical Mechanisms of Rapid Stomatal Dynamics in Grasses
合作研究:草类快速气孔动力学的细胞和生物力学机制
- 批准号:
2327731 - 财政年份:2023
- 资助金额:
$ 13.93万 - 项目类别:
Standard Grant
Collaborative Research: Cellular and Biomechanical Mechanisms of Rapid Stomatal Dynamics in Grasses
合作研究:草类快速气孔动力学的细胞和生物力学机制
- 批准号:
2327730 - 财政年份:2023
- 资助金额:
$ 13.93万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Analysis of the Cell Biological, Biomechanical, and Physiological Dynamics of Stomatal Guard Cells in Plants
合作研究:植物气孔保卫细胞的细胞生物学、生物力学和生理动力学的综合分析
- 批准号:
2015943 - 财政年份:2020
- 资助金额:
$ 13.93万 - 项目类别:
Continuing Grant
Collaborative Research: Integrated Analysis of the Cell Biological, Biomechanical, and Physiological Dynamics of Stomatal Guard Cells in Plants
合作研究:植物气孔保卫细胞的细胞生物学、生物力学和生理动力学的综合分析
- 批准号:
2015947 - 财政年份:2020
- 资助金额:
$ 13.93万 - 项目类别:
Continuing Grant
Collaborative Research: An Integrated Experimental and Computational Approach to Discover Biomechanical Mechanisms of Leaf Epidermal Morphogenesis
合作研究:探索叶表皮形态发生生物力学机制的综合实验和计算方法
- 批准号:
1715544 - 财政年份:2017
- 资助金额:
$ 13.93万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: Scalable, high-order mesh-free algorithms applied to bulk-surface biomechanical problems
AF:小型:协作研究:应用于体表面生物力学问题的可扩展、高阶无网格算法
- 批准号:
1717556 - 财政年份:2017
- 资助金额:
$ 13.93万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Experimental and Computational Approach to Discover Biomechanical Mechanisms of Leaf Epidermal Morphogenesis
合作研究:探索叶表皮形态发生生物力学机制的综合实验和计算方法
- 批准号:
1715444 - 财政年份:2017
- 资助金额:
$ 13.93万 - 项目类别:
Standard Grant