Shape Shifting Stomata: The Role of Geometry in Plant Cell Function
变形气孔:几何形状在植物细胞功能中的作用
基本信息
- 批准号:BB/T005041/1
- 负责人:
- 金额:$ 60.45万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Plants need to draw water up from the soil to the shoots. They do this by losing water vapour via small, controllable pores on the leaf surface, termed stomata. Open stomata allow plants to pull water up to the top of the plant and, at the same time, they allow carbon dioxide into the leaf where it is used for photosynthesis, the process by which all our food is made. However, if stomata were always open this would lead to catastrophic water loss, wilting, and eventual death of the plant. Therefore plants continually adjust their stomata, making sure that they are open enough to allow the plant to grow when conditions are good, but closed when there is the danger of losing too much water. Evolution has led to two main types of stomata: a simple form composed of just two cells (found in the majority of plants) and a more complex form composed of four cells. These more complex stomata are found in plants such as maize, rice, wheat and barley- the most important crops for feeding the world. One of the reasons why these plants are so successful is thought to be because their stomata function better than those found in other plants, leading to less water loss. However, exactly how the four-celled stomata are "better" than the two-celled type is unclear. Our hypothesis is that it is the structure of the stomata (both the special shape of the cells and/or the mechanical properties of the cell walls in the stomata) that make them a more efficient system for controlling water loss. This project will investigate and test this idea. To resolve the question of how grass stomata can perform better will involve understanding the mechanical properties of stomata to identify which elements of the structure are most important for stomatal function. Biologists and computational scientists will work together to create a model of the four-celled stomata, using a model grass system, brachypodium, in which significant advances in stomatal biology have recently been made, providing important tools and resources for this project.By creating a computer model we will be able to rapidly explore ideas on how the stomata work. We will then test these ideas experimentally, creating new types of stomata in the laboratory and evaluating their performance. During the project we will apply new software tools to generate these models. This will allow us to additionally test the idea that the specific shape of a cell can have a major outcome on what a cell does. This will both advance our fundamental understanding of biology and provide a new insight into how stomata work: do apparently minor changes in shape between different stomata on a leaf actually have a large influence on how well the stomata control water loss? As a result of this work we will determine what makes four-cell stomata better than two-cell stomata, answering a long-held question in plant biology and providing information that will be of potential use to crop breeders looking to improve how well crops survive under drought- a major challenge in UK and world agriculture.
植物需要从土壤到芽。他们通过在叶子表面上的小毛孔(称为气孔)失去水蒸气来做到这一点。开放的气孔使植物可以将水拉到植物的顶部,同时,它们使二氧化碳进入用于光合作用的叶片,这是我们所有食物的过程。但是,如果始终敞开气孔,这将导致灾难性的水分流失,枯萎和植物的最终死亡。因此,植物不断调节气孔,确保它们的开放量足以使植物在条件良好时生长,但是在损失过多水的危险时关闭。进化导致了两种主要的气孔类型:一种简单的形式,仅由两个细胞组成(大多数植物中)和一个由四个细胞组成的更复杂形式。这些更复杂的气孔是在玉米,大米,小麦和大麦等植物中发现的,这是为世界供养的最重要的农作物。这些植物如此成功的原因之一被认为是因为它们的气孔功能比其他植物中的植物功能更好,从而减少了水分流失。但是,尚不清楚四型气孔与两型类型的“更好”。我们的假设是,它是气孔的结构(细胞的特殊形状和/或气孔中细胞壁的机械性能)使它们成为控制水损失的更有效系统。该项目将调查并测试这个想法。为了解决格拉斯气孔如何表现更好的问题,将涉及了解气孔的机械性能,以确定结构的哪些元素对于气孔功能最重要。生物学家和计算科学家将使用模型草系统(Brachypodium)共同努力,创建一个四细胞气孔的模型,最近已经在该项目中取得了重大进展,为该项目提供了重要的工具和资源。通过创建计算机模型,我们将能够快速探索有关OntaMata如何运作的想法。然后,我们将通过实验测试这些想法,在实验室中创建新型的气孔并评估其性能。在项目期间,我们将应用新的软件工具来生成这些模型。这将使我们还可以测试细胞的特定形状可以在细胞所做的事情上具有重大结果的想法。这既可以提高我们对生物学的基本理解,又可以提供有关气孔的工作方式的新见解:在叶子上不同气孔之间的形状显然会发生很小的变化,实际上对气孔控制水损失的影响很大?由于这项工作,我们将确定是什么使四细胞气孔比两细胞气孔更好,回答了植物生物学中长期以来的问题,并提供潜在的信息,这些信息可能会用于作物繁殖者,以寻求改善在干旱下的作物如何生存 - 在英国和世界农业中的主要挑战。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Altering arabinans increases Arabidopsis guard cell flexibility and stomatal opening.
- DOI:10.1016/j.cub.2022.05.042
- 发表时间:2022-07-25
- 期刊:
- 影响因子:9.2
- 作者:Carroll, Sarah;Amsbury, Sam;Durney, Clinton H.;Smith, Richard S.;Morris, Richard J.;Gray, Julie E.;Fleming, Andrew J.
- 通讯作者:Fleming, Andrew J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew James Fleming其他文献
Andrew James Fleming的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew James Fleming', 18)}}的其他基金
Innovation in plant and soil sciences to tackle critical global challenges
植物和土壤科学创新应对全球严峻挑战
- 批准号:
BB/X01827X/1 - 财政年份:2023
- 资助金额:
$ 60.45万 - 项目类别:
Research Grant
A 3D Model of Photosynthesis to Inform Breeding for Improved Rice Performance in a Changing Climate
光合作用 3D 模型为育种提供信息,以提高气候变化下的水稻性能
- 批准号:
BB/N013719/1 - 财政年份:2016
- 资助金额:
$ 60.45万 - 项目类别:
Research Grant
Optimising Photosynthetic Efficiency via Leaf Structure
通过叶子结构优化光合效率
- 批准号:
BB/J004065/1 - 财政年份:2012
- 资助金额:
$ 60.45万 - 项目类别:
Research Grant
相似国自然基金
EGLN3羟化酶通过调控巨噬细胞重编程促进肺癌细胞EMT及转移的机制研究
- 批准号:82373030
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于荧光共振能量转移及指示剂置换法策略纳米组装体比率荧光识别三磷酸腺苷
- 批准号:22361028
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
RNA甲基化转移酶METTL7B介导lncRNA-MIR22HG的m6A修饰促进脑缺血再灌注损伤的机制研究
- 批准号:82301476
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
海洋来源二倍半萜MHO7靶向整合素β8/TGF-β轴调控EMT抑制三阴性乳腺癌转移的作用机制研究
- 批准号:82304550
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Shifting the Culture of Out-of-field Professional Education for Teachers
转变教师外业专业教育文化
- 批准号:
DP240101175 - 财政年份:2024
- 资助金额:
$ 60.45万 - 项目类别:
Discovery Projects
IMPLEMENTATION: Shifting Culture and Mitigating Inequities in Landscape Ecology Through a Collaborative Network of Professional Societies
实施:通过专业协会的合作网络转变文化并减轻景观生态学中的不平等
- 批准号:
2335225 - 财政年份:2024
- 资助金额:
$ 60.45万 - 项目类别:
Standard Grant
Re-presenting population science data in the context of shifting demographic dynamics, climate change and alternative epistemologies
在不断变化的人口动态、气候变化和替代认识论的背景下重新呈现人口科学数据
- 批准号:
2341434 - 财政年份:2024
- 资助金额:
$ 60.45万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
- 批准号:
2327892 - 财政年份:2024
- 资助金额:
$ 60.45万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
- 批准号:
2327893 - 财政年份:2024
- 资助金额:
$ 60.45万 - 项目类别:
Standard Grant