EAPSI: Modeling of Radiation Effects for Advanced Silicon-Based Electronic Systems within Extreme Environments
EAPSI:极端环境下先进硅基电子系统的辐射效应建模
基本信息
- 批准号:1515640
- 负责人:
- 金额:$ 0.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Fellowship Award
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The microelectronic revolution has helped diffuse technology throughout the globe, leading to a radical shift in the way we share information, conduct business, and educate ourselves. As applications such as global telecommunications, weather radar, and satellite navigation (GPS) incorporate advanced in-orbit electronics, it is pertinent to understand how these systems operate within a dynamic environment. Wide ambient temperatures and exposure to ionizing radiation can degrade electronics and generate errors, which if unchecked, can lead to a catastrophic system failure. This research will serve as an investigation into the primary reliability issues facing next-generation electronics within radiation-intense environments. This research will be conducted in collaboration with Dr. Kazuyuki Hirose, an expert in advanced semiconductor fabrication and radiation effects research at the Institute of Space and Astronautical Science (ISAS), a division of the Japan Aerospace Exploration Agency (JAXA) in Sagamihara, Japan. Ultimately, this collaborative investigation will help develop new models, which can accurately predict system-level sensitivities, enabling engineers to envision new design strategies for ensuring long-term, error-free operations.This work aims to investigate the effects of semiconductor technology scaling on the radiation tolerance of silicon-germanium heterojunction bipolar transistor (SiGe HBT) platforms. Conventional design methodologies for radiation-hardened electronics rely on multiple system redundancies and metallic shielding, which come at severe weight and cost penalties. The need for flexible, low-cost electronics in orbital and deep space applications has brought SiGe technologies into the spotlight, but the viable long-term capabilities of these modern platforms within radiation-intense environments remains largely unexplored. Accurate device models coupled with radiation event simulation techniques are necessary to provide an effective method to analyze device-level operational sensitivities and predict the circuit-level and system-level response to these random transient processes. By expanding these transient models across multiple SiGe technology nodes and functional biases, a comprehensive, SiGe HBT radiation model would provide unique simulation capabilities for the design and fabrication of next-generation, radiation-hard electronics. This NSF EAPSI award is funded in collaboration with the Japan Society for the Promotion of Science (JSPS).
微电子革命帮助技术在地球仪中传播,导致我们分享信息、开展业务和自我教育的方式发生根本性转变。由于全球电信、气象雷达和卫星导航(GPS)等应用都采用了先进的在轨电子设备,因此有必要了解这些系统如何在动态环境中运行。广泛的环境温度和暴露于电离辐射会使电子设备退化并产生错误,如果不加以控制,可能导致灾难性的系统故障。这项研究将作为下一代电子产品在强辐射环境中面临的主要可靠性问题的调查。这项研究将与Kazuyuki Hirose博士合作进行,Kazuyuki Hirose博士是日本相模原市日本宇宙航空研究开发机构(JAXA)的一个部门-宇宙航空科学研究所(ISAS)的先进半导体制造和辐射效应研究专家。最终,这项合作研究将有助于开发新的模型,它可以准确地预测系统级的灵敏度,使工程师能够设想新的设计策略,以确保长期,无差错operation.This工作的目的是调查的影响,半导体技术缩放的硅锗异质结双极晶体管(SiGe HBT)平台的辐射耐受性。抗辐射电子设备的传统设计方法依赖于多个系统冗余和金属屏蔽,这会带来严重的重量和成本损失。轨道和深空应用对灵活、低成本电子产品的需求使SiGe技术成为人们关注的焦点,但这些现代平台在辐射密集环境中的可行长期能力在很大程度上仍未得到探索。精确的器件模型加上辐射事件仿真技术是必要的,以提供一种有效的方法来分析器件级的操作灵敏度,并预测这些随机瞬态过程的电路级和系统级响应。通过将这些瞬态模型扩展到多个SiGe技术节点和功能偏置,全面的SiGe HBT辐射模型将为下一代抗辐射电子器件的设计和制造提供独特的仿真能力。NSF EAPSI奖由日本科学促进会(JSPS)资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nelson Lourenco其他文献
Sa1885 - Hydrocortisone Premedication Withdrawal in Patients on Stable Infliximab Maintenance: Clinical and Pharmacokinetic Outcomes
- DOI:
10.1016/s0016-5085(17)31520-2 - 发表时间:
2017-04-01 - 期刊:
- 影响因子:
- 作者:
My-Linh Tran-Minh;Marianne Maillet;Claire Auzolle;Marion Simon;Anne-Laure Cathala;Thomas Aparicio;Clotilde Baudry;Joelle Bonnet;Nelson Lourenco;Pascal Houze;Jean-Marc Gornet;Matthieu Allez - 通讯作者:
Matthieu Allez
Infliximab desensitization in patients with inflammatory bowel diseases: a safe therapeutic alternative
炎症性肠病患者的英夫利昔单抗脱敏:一种安全的治疗选择
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:1.9
- 作者:
N. Hammoudi;D. Hassid;J. Bonnet;M. T. Tran minh;C. Baudry;A. Vauthier;L. Chedouba;Pascal Houzé;Nelson Lourenco;Thomas Aparicio;J. Gornet;M. Allez - 通讯作者:
M. Allez
Cryptococcal meningitis and cerebral vasculitis in a patient with primary intestinal lymphangiectasia: a case report
原发性肠道淋巴管扩张症患者隐球菌性脑膜炎和脑血管炎一例
- DOI:
10.1007/s10096-023-04657-y - 发表时间:
2023 - 期刊:
- 影响因子:4.5
- 作者:
Martin Mathurin;Sandra Devatine;Aude Kopp;Antoine Guillonnet;A. Alanio;Nelson Lourenco;Victoria Manda;V. Delcey;Jean;Pierre - 通讯作者:
Pierre
Satellite Formation Design to Enhance Passive Millimeter Wave Imaging Mission Performance
增强被动毫米波成像任务性能的卫星编队设计
- DOI:
10.2514/6.2022-1881 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Theresa E. Bender;J. McNabb;Nikita S. Birbasov;Madeline Bowne;Bradford Robertson;Alicia Sudol;D. Mavris;Nelson Lourenco - 通讯作者:
Nelson Lourenco
Nelson Lourenco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions
职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证
- 批准号:
2339032 - 财政年份:2024
- 资助金额:
$ 0.51万 - 项目类别:
Continuing Grant
Computational modeling of volcanic eruptions and their seismic and infrasound radiation
火山喷发及其地震和次声辐射的计算模型
- 批准号:
2231849 - 财政年份:2023
- 资助金额:
$ 0.51万 - 项目类别:
Standard Grant
EAGER: Machine Learning and Data Assimilation for Discovery of Generalized Fokker-Planck Equation for Radiation Belt Modeling
EAGER:用于发现辐射带建模的广义福克-普朗克方程的机器学习和数据同化
- 批准号:
2211345 - 财政年份:2022
- 资助金额:
$ 0.51万 - 项目类别:
Standard Grant
Dynamic Geometry Modeling using AI for Fast and High Accurate Radiation Simulator
使用 AI 进行动态几何建模,实现快速、高精度的辐射模拟器
- 批准号:
22K03653 - 财政年份:2022
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Project 2: Radiation-Induced Lymphopenia: Understanding, Predictive Modeling and Developing Photon and Proton-Based Mitigation Strategies.
项目 2:辐射引起的淋巴细胞减少症:理解、预测建模和开发基于光子和质子的缓解策略。
- 批准号:
10491853 - 财政年份:2021
- 资助金额:
$ 0.51万 - 项目类别:
Project 2: Radiation-Induced Lymphopenia: Understanding, Predictive Modeling and Developing Photon and Proton-Based Mitigation Strategies.
项目 2:辐射引起的淋巴细胞减少症:理解、预测建模和开发基于光子和质子的缓解策略。
- 批准号:
10270306 - 财政年份:2021
- 资助金额:
$ 0.51万 - 项目类别:
Modeling the transport of photons from source to detector as a means of improving radiation therapy by enhanced utilization of kV and MV x-ray imaging
对光子从源到探测器的传输进行建模,作为通过增强 kV 和 MV X 射线成像的利用来改进放射治疗的一种手段
- 批准号:
RGPIN-2015-05623 - 财政年份:2019
- 资助金额:
$ 0.51万 - 项目类别:
Discovery Grants Program - Individual
Modeling the transport of photons from source to detector as a means of improving radiation therapy by enhanced utilization of kV and MV x-ray imaging
对光子从源到探测器的传输进行建模,作为通过增强 kV 和 MV X 射线成像的利用来改进放射治疗的一种手段
- 批准号:
RGPIN-2015-05623 - 财政年份:2018
- 资助金额:
$ 0.51万 - 项目类别:
Discovery Grants Program - Individual
Systems biology modeling of radiation resistance and chemotherapy-radiation combination therapies in head and neck squamous cell carcinoma
头颈鳞状细胞癌放射抗性和化疗-放射联合治疗的系统生物学模型
- 批准号:
10380480 - 财政年份:2018
- 资助金额:
$ 0.51万 - 项目类别:
CAREER: Understanding and Modeling the Mysterious Dropout of Radiation Belt Electrons
职业:理解辐射带电子的神秘消失并对其进行建模
- 批准号:
1752736 - 财政年份:2018
- 资助金额:
$ 0.51万 - 项目类别:
Continuing Grant