Systems biology modeling of radiation resistance and chemotherapy-radiation combination therapies in head and neck squamous cell carcinoma
头颈鳞状细胞癌放射抗性和化疗-放射联合治疗的系统生物学模型
基本信息
- 批准号:10380480
- 负责人:
- 金额:$ 4.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-14 至 2021-05-13
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Tumor resistance to radiation therapy remains a significant obstacle to long-term cancer patient survival,
especially for head and neck squamous cell carcinoma (HNSCC), a cancer type with poor long-term outcomes
(less than 50% advanced stage five-year survival). To overcome the problem of radiation resistance, radiation
therapy is being combined with radiation-sensitizing chemotherapies. Prediction of an individual’s sensitivity to
radiation and specific chemotherapy-radiation combination therapies prior to treatment would improve the
development of personalized treatment plans for cancer patients. Efforts are being made to create systems
biology models of cancer cells for biomarker discovery and prediction of treatment response; however, due to
methodological shortcomings, failure to integrate multi-omic data on a genome-scale, and lack of specificity to
individual patient tumors, these predictive models have yet to be implemented clinically. To address these needs,
the objective of this project is to develop a personalized systems biology modeling platform for individualized
prediction of HNSCC patient tumor response to radiation and chemotherapy-radiation combination therapies.
These models will be created by first integrating comprehensive biological data on individual patients from The
Cancer Genome Atlas (TCGA). This approach will allow for the comparison of metabolic, signaling, and
phenotypic signatures between radiation-sensitive and radiation-resistant patient tumors. By then integrating the
mechanisms of action of radiation therapy and radiation-sensitizing chemotherapies into the modeling
framework, the response to particular chemotherapy-radiation combination therapies in individual radiation-
resistant patient tumors can be predicted. Machine learning classifiers will be developed from TCGA patient data
and model predictions to determine which biological and clinical factors are most predictive of radiation sensitivity
and chemotherapy-radiation combination therapy success. It is hypothesized that differential response to
chemotherapy-radiation combination therapies in radiation-resistant HNSCC tumors is accomplished
through redox metabolism and signaling, and components of redox biology within the modeling
framework will significantly enrich the list of predictive biomarkers for combination therapy success.
Although the focus of this project will be on HNSCC, this systems biology modeling approach will be applicable
to any cancer type. The outcomes of this project will be a reduced set of clinically-measurable biomarkers for
accurate prediction of HNSCC patient response to radiation therapy and specific chemotherapy-radiation
combination therapies, as well as a precision medicine platform to test clinically relevant therapeutic strategies.
This project is innovative because it combines multi-omic cancer patient data with state-of-the-art systems
biology modeling techniques to investigate the biological mechanisms of radiation resistance, as well as to
predict chemotherapy-radiation combination therapy response in individual radiation-resistant patients.
肿瘤对放射治疗的耐药性仍然是癌症患者长期生存的一个重大障碍,
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Elliott Lewis其他文献
Joshua Elliott Lewis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
组蛋白乙酰化修饰ATG13激活自噬在牵张应力介导骨缝Gli1+干细胞成骨中的机制研究
- 批准号:82370988
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
Journal of Integrative Plant Biology
- 批准号:31024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Structural characterization of MCE transport systems from Mycobacterium tuberculosis
结核分枝杆菌 MCE 转运系统的结构表征
- 批准号:
10681871 - 财政年份:2023
- 资助金额:
$ 4.56万 - 项目类别:
Learn Systems Biology Equations From Snapshot Single Cell Genomic Data
从快照单细胞基因组数据学习系统生物学方程
- 批准号:
10736507 - 财政年份:2023
- 资助金额:
$ 4.56万 - 项目类别:
Structural systems biology of microenvironmental oxidative stress and synthetic biology intervention
微环境氧化应激的结构系统生物学与合成生物学干预
- 批准号:
10715112 - 财政年份:2023
- 资助金额:
$ 4.56万 - 项目类别:
Improving in vitro preantral follicle development using novel bioengineered culture systems and pre-theca-like cells as a strategy for assisted reproduction
使用新型生物工程培养系统和卵泡膜前样细胞作为辅助生殖策略改善体外窦前卵泡发育
- 批准号:
10749434 - 财政年份:2023
- 资助金额:
$ 4.56万 - 项目类别:
Systems Biology of Antigen and T-Cell Transport in Cancer Immunotherapy
癌症免疫治疗中抗原和 T 细胞运输的系统生物学
- 批准号:
10751192 - 财政年份:2023
- 资助金额:
$ 4.56万 - 项目类别:
Mathematical Oncology Systems Analysis Imaging Center (MOSAIC)
数学肿瘤学系统分析成像中心 (MOSAIC)
- 批准号:
10729420 - 财政年份:2023
- 资助金额:
$ 4.56万 - 项目类别:
Image-based Systems Biology of Vascular Co-option in Brain Tumors
脑肿瘤血管选择的基于图像的系统生物学
- 批准号:
10681077 - 财政年份:2023
- 资助金额:
$ 4.56万 - 项目类别:
Multi-organ culture and pumping systems for ex vivo models of immunity in hybrid tissue-chips
用于混合组织芯片中免疫离体模型的多器官培养和泵系统
- 批准号:
10578463 - 财政年份:2023
- 资助金额:
$ 4.56万 - 项目类别:
Development of data driven and AI empowered systems biology to study human diseases
数据驱动和人工智能的发展使系统生物学能够研究人类疾病
- 批准号:
10714763 - 财政年份:2023
- 资助金额:
$ 4.56万 - 项目类别:














{{item.name}}会员




