Computational modeling of volcanic eruptions and their seismic and infrasound radiation

火山喷发及其地震和次声辐射的计算模型

基本信息

  • 批准号:
    2231849
  • 负责人:
  • 金额:
    $ 42.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-15 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Explosive volcanic eruptions similar to the 1980 Mount Saint Helens eruption can be monitored from a safe distance using seismometers, which measure shaking of the ground, and microphones, which measure sound waves in the atmosphere. The overall goal of this project is to develop connections between shaking, sound waves, what’s going on inside a volcano and its eruption plume, and why explosive eruptions occur. One possibility is that the magma conduit gets blocked, leading to pressure build-up which eventually destroys the blockage and causes an eruption. The project team will develop computer simulations that track magma as it travels through the volcanic conduit (in some cases, having to break through blockages), becomes fragmented, and is discharged into the atmosphere. These simulations can predict sound waves and ground shaking generated by the eruption. Predictions from the models will be compared with data from the 2013-2014 explosive eruptions of Tungurahua volcano in Ecuador, which are probably the most powerful explosive eruptions ever recorded. This research will be done in partnership with the Instituto Geofisico in Ecuador, who will be providing data and expert knowledge of the eruptions. The project will provide training for two to three PhD students and several undergraduates, and all of the computer programs the team develops to simulate the eruptions will be freely shared with other scientists.This project develops models of seismic and infrasound radiation from vulcanian eruptions. The goal is to use seismic and infrasound data to quantify the depth of fragmentation, the forces associated with plug rupture at the onset of eruptions, the mass eruption rate and total erupted mass, and the vertical momentum exchange between the solid Earth and atmosphere. These are useful to understand fundamental processes involved in vulcanian eruptions (e.g., under what conditions does a plug form and what causes it to rupture) and to provide inputs to eruption plume modeling. The project builds on previous NSF-supported work by the project team that produced the theory and workflow to compute synthetic seismograms from unsteady conduit flow models. The project team is continuing work on an open-source code that couples conduit flow to a compressible atmosphere, thereby also providing predictions of infrasound radiation and the flow structure of the eruptive jet and plume. This overall modeling framework will be used for generic studies to understand processes as well as to study actual eruptions for which seismic and infrasound data are available. For the latter, the project team has partnered with the Insituto Geofisico, Ecuador, to model the well-recorded 2013-2014 eruption of Tungurahua volcano. An additional component of the project is a study of seismic eruption tremor (incoherent waves in the ~1-10 Hz band), a ubiquitous characteristic of explosive eruptions that in some cases is correlated with plume height. The project team will explore multiple hypotheses for eruption tremor, including turbulence and particle-wall interactions above fragmentation, as well as unsteadiness of the fragmentation process as magma with variable viscosity and other properties passes through the fragmentation depth. Finally, the project team is incorporating water (including phase changes) into their multiphase modeling code, giving them the ability to study the interaction of magma with groundwater and seawater, including submarine eruptions. The open-source codes and modeling workflows will be provided to the community for use by volcano observatories and other researchers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
类似于1980年圣海伦斯火山爆发的爆炸性火山爆发可以使用地震仪和麦克风从安全距离进行监测,地震仪测量地面的震动,麦克风测量大气中的声波。这个项目的总体目标是研究震动、声波、火山内部发生的事情及其喷发羽流之间的联系,以及为什么会发生爆炸性喷发。一种可能性是岩浆管道被堵塞,导致压力积聚,最终破坏堵塞并导致喷发。该项目团队将开发计算机模拟,跟踪岩浆穿过火山管道(在某些情况下,必须突破堵塞),变得支离破碎,并排入大气层。这些模拟可以预测火山爆发产生的声波和地面震动。这些模型的预测将与2013-2014年厄瓜多尔通古拉瓦火山爆发的数据进行比较,这可能是有史以来最强大的爆发。这项研究将与厄瓜多尔的地球物理研究所合作进行,后者将提供火山爆发的数据和专家知识。该项目将为两到三名博士生和几名本科生提供培训,该团队开发的所有用于模拟火山爆发的计算机程序将免费与其他科学家分享。该项目开发了火山爆发的地震和次声辐射模型。目标是利用地震和次声数据量化碎裂深度、喷发开始时与岩塞破裂有关的力、质量喷发率和喷发总质量以及固体地球与大气之间的垂直动量交换。这些有助于理解火山喷发的基本过程(例如,在什么条件下形成栓塞以及什么原因导致其破裂),并为喷发羽流建模提供输入。该项目建立在项目团队以前NSF支持的工作基础上,该工作产生了从不稳定管道流模型计算合成地震图的理论和工作流程。该项目小组正在继续编写一个开放源代码,将管道流与可压缩大气耦合起来,从而也提供了次声辐射和喷发喷流和羽流的流动结构的预测。这一总体建模框架将用于一般性研究,以了解各种过程,并研究可获得地震和次声数据的实际喷发。对于后者,项目团队与厄瓜多尔地球物理研究所合作,对记录良好的2013-2014年通古拉瓦火山喷发进行了建模。该项目的另一个组成部分是研究地震喷发震颤(~1-10 Hz波段的非相干波),这是爆炸性喷发的一个普遍特征,在某些情况下与羽流高度有关。项目小组将探讨喷发震颤的多种假设,包括破碎上方的湍流和颗粒-壁相互作用,以及具有可变粘度和其他特性的岩浆通过破碎深度时破碎过程的不稳定性。最后,该项目团队正在将水(包括相变)纳入其多相建模代码中,使他们能够研究岩浆与地下水和海水的相互作用,包括海底喷发。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Dunham其他文献

Earthquake Sequences on Rough Faults: Effect of Residual Stresses on Subsequent Ruptures
粗糙断层上的地震序列:残余应力对后续破裂的影响
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    So Ozawa;Eric Dunham
  • 通讯作者:
    Eric Dunham
Earthquake sequences on rough faults: effect of residual stress distribution on subsequent ruptures
粗糙断层上的地震序列:残余应力分布对后续破裂的影响
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    So Ozawa;Eric Dunham
  • 通讯作者:
    Eric Dunham
Numerical simulation of earthquake sequences on rough faults
粗糙断层地震序列数值模拟
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    So Ozawa;Eric Dunham
  • 通讯作者:
    Eric Dunham

Eric Dunham的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Dunham', 18)}}的其他基金

Travel: International Workshop on Numerical Modeling of Earthquake Motions: Waves and Ruptures
旅行:地震运动数值模拟国际研讨会:波浪和破裂
  • 批准号:
    2346964
  • 财政年份:
    2024
  • 资助金额:
    $ 42.21万
  • 项目类别:
    Standard Grant
Earthquake Sequence Simulations with Thermomechanical Coupling and Fault-Zone Fluid Transport
热力耦合和断层带流体输运的地震层序模拟
  • 批准号:
    1947448
  • 财政年份:
    2020
  • 资助金额:
    $ 42.21万
  • 项目类别:
    Continuing Grant
Computational simulations of volcanic eruptions and infrasound
火山喷发和次声的计算模拟
  • 批准号:
    1930979
  • 财政年份:
    2020
  • 资助金额:
    $ 42.21万
  • 项目类别:
    Standard Grant
International Workshop on Numerical Modeling of Earthquake Motions: Waves and Ruptures, Smolenice, Slovakia June 30-July 4, 2019
地震运动数值模拟国际研讨会:波浪和破裂,斯洛伐克斯莫莱尼采,2019 年 6 月 30 日至 7 月 4 日
  • 批准号:
    1840988
  • 财政年份:
    2019
  • 资助金额:
    $ 42.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Do Ocean Wave Impacts Pose a Hazard to the Stability of West Antarctic Ice Shelves?
合作研究:海浪冲击是否会对南极西部冰架的稳定性造成危害?
  • 批准号:
    1744759
  • 财政年份:
    2018
  • 资助金额:
    $ 42.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Characterizing Brittle Failure and Fracture Propagation in Fast Ice Sliding with Dynamic Rupture Models based on Whillans Ice Stream Seismic/Geodetic Data
合作研究:利用基于 Whillans 冰流地震/大地测量数据的动态破裂模型来表征快速冰滑动中的脆性破坏和断裂扩展
  • 批准号:
    1542885
  • 财政年份:
    2016
  • 资助金额:
    $ 42.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Waves in Volcanic Conduit-crack Systems and Very Long Period Seismicity at Kilauea Volcano, Hawaii
合作研究:夏威夷基拉韦厄火山的火山管道裂缝系统中的波浪和甚长周期地震活动
  • 批准号:
    1624431
  • 财政年份:
    2016
  • 资助金额:
    $ 42.21万
  • 项目类别:
    Standard Grant
CAREER: Subduction Zone Hazards: Megathrust Rupture Dynamics and Tsunamis
职业:俯冲带危险:巨型逆冲断层破裂动力学和海啸
  • 批准号:
    1255439
  • 财政年份:
    2013
  • 资助金额:
    $ 42.21万
  • 项目类别:
    Continuing Grant
Collaborative Research: Seismic Waves from Volcanoes: Fully Coupled Time-Dependent Models of Fluid Flow Through Elastic Walled Conduits
合作研究:火山地震波:通过弹性壁管道的流体流动的完全耦合时变模型
  • 批准号:
    1114073
  • 财政年份:
    2011
  • 资助金额:
    $ 42.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Earthquakes on Nonplanar Faults: Rupture Dynamics and High Frequency Ground Motion
合作研究:非平面断层地震:破裂动力学和高频地震动
  • 批准号:
    0910574
  • 财政年份:
    2009
  • 资助金额:
    $ 42.21万
  • 项目类别:
    Standard Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
页岩超临界CO2压裂分形破裂机理与分形离散裂隙网络研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
非管井集水建筑物取水机理的物理模拟及计算模型研究
  • 批准号:
    40972154
  • 批准年份:
    2009
  • 资助金额:
    41.0 万元
  • 项目类别:
    面上项目
ABM有效性检验的关键技术研究
  • 批准号:
    70701001
  • 批准年份:
    2007
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
微生物发酵过程的自组织建模与优化控制
  • 批准号:
    60704036
  • 批准年份:
    2007
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
三峡库区以流域为单元森林植被对洪水影响研究
  • 批准号:
    30571486
  • 批准年份:
    2005
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Identification and Separation of Volcanic and Natural Climate Variability Signals
火山和自然气候变化信号的识别和分离
  • 批准号:
    22KF0010
  • 财政年份:
    2023
  • 资助金额:
    $ 42.21万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Modeling distribution shape of accumulated volcanic ash on roof thorough ashfall test
屋顶火山灰堆积分布形状的模拟彻底落灰试验
  • 批准号:
    22K04404
  • 财政年份:
    2022
  • 资助金额:
    $ 42.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Controls on explosive basaltic eruptions within the San Francisco Volcanic Field: Constraints from seismic imaging and multiphase magma ascent modeling
对旧金山火山场内爆炸性玄武岩喷发的控制:地震成像和多相岩浆上升模型的限制
  • 批准号:
    2202666
  • 财政年份:
    2022
  • 资助金额:
    $ 42.21万
  • 项目类别:
    Continuing Grant
CAREER: Numerical Modeling of Volcanic Flank Instability Processes
职业:火山侧面不稳定过程的数值模拟
  • 批准号:
    1945417
  • 财政年份:
    2020
  • 资助金额:
    $ 42.21万
  • 项目类别:
    Continuing Grant
Collaborative Research: Physical Modeling of Submarine Volcanic Eruption Generated Tsunamis
合作研究:海底火山喷发引发海啸的物理模型
  • 批准号:
    1563220
  • 财政年份:
    2016
  • 资助金额:
    $ 42.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Physical Modeling of Submarine Volcanic Eruption Generated Tsunamis
合作研究:海底火山喷发引发海啸的物理模型
  • 批准号:
    1563217
  • 财政年份:
    2016
  • 资助金额:
    $ 42.21万
  • 项目类别:
    Standard Grant
The Influence of Recent Volcanic Eruptions on Stratospheric Ozone Recovery: A Data Analysis and Modeling Study Including Estimated Uncertainties
最近火山喷发对平流层臭氧恢复的影响:数据分析和建模研究,包括估计的不确定性
  • 批准号:
    1539972
  • 财政年份:
    2015
  • 资助金额:
    $ 42.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Measurement and Modeling of Air Entrainment and Ash Distribution in Weak Volcanic Plumes
合作研究:弱火山羽流中空气夹带和灰分分布的测量和建模
  • 批准号:
    1346580
  • 财政年份:
    2014
  • 资助金额:
    $ 42.21万
  • 项目类别:
    Continuing Grant
Collaborative Research: Measurement and Modeling of Air Entrainment and Ash Distribution in Weak Volcanic Plumes
合作研究:弱火山羽流中空气夹带和灰分分布的测量和建模
  • 批准号:
    1346577
  • 财政年份:
    2014
  • 资助金额:
    $ 42.21万
  • 项目类别:
    Continuing Grant
EAR-PF: Integrating Field Deposit, Remote Sensing, and Numerical Modeling Perspectives on the Injection and Fallout of Hazardous Volcanic Ash
EAR-PF:结合现场沉积、遥感和数值模拟视角来研究危险火山灰的注入和沉降
  • 批准号:
    1250029
  • 财政年份:
    2013
  • 资助金额:
    $ 42.21万
  • 项目类别:
    Fellowship Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了