Microlocal Analysis and Monge-Ampere Type Equations in Geometry

几何中的微局域分析和Monge-Ampere型方程

基本信息

  • 批准号:
    1515703
  • 负责人:
  • 金额:
    $ 19.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

This project focuses on problems mainly in geometric analysis that can be formulated as partial differential equations of Monge-Ampere type, broadly understood. In general terms, the analytic and geometric techniques developed in this proposal should be useful to researchers working in geometry, physics, and elsewhere. On the one hand, deepening our understanding of canonical geometries on Kahler manifolds and Lagrangians in Calabi-Yau manifolds seems to be of interest to physicists trying to model the geometry of the universe. On the other hand, these canonical geometries have relations to a wide variety of established fields in mathematics. Moreover, Monge-Ampere type equations arise in a wide variety of problems in pure and applied mathematics and have a wide range of real-world applications, such as meteorology and optimal design of networks. Developing methods and techniques to construct and approximate solutions to such equations and to study their regularity could have applications in other instances where these equations appear. Finally, the Legendre transform is a classical tool in mathematics, mechanics, and economics, and seeking generalizations of this theory to other settings, as in this project, could find a broad range of applications.A number of the equations proposed in this project are new, fall outside of the traditionally known Monge-Ampere type equations, and have exciting new geometric applications requiring new analytical tools. A novel feature in this research is to apply several different tools of microlocal analysis, traditionally pertaining to linear problems, to study these fully nonlinear equations. Another theme is to investigate novel relations between convex analysis and geometry and complex analysis and geometry. The problems investigated include: (1) Kahler-Einstein metrics with conic singularities. These metrics provide a new powerful analytic tool in algebraic and complex geometry. (2) The PI will study a new degenerate version of the special Lagrangian equation. It governs geodesics in the space of positive Lagrangians on a Calabi-Yau manifold. Understanding solutions of this equation requires new methods and will have applications to existence and uniqueness of special Lagrangians, singularities of Lagrangian mean curvature flow, the topology of the space of Lagrangians, and Lagrangian intersection theory. (3) The PI shall study the space of Kahler metrics using geodesics in the space, finite-dimensional Bergman approximations, Fourier integral operators with complex phase, and the metric space geometry of this space. (4) The PI is developing interactions between complex and convex geometry, including a differential theory for the polarity transform in parallel to the known theory for the Legendre transform. New equations of Hamilton-Jacobi and Monge-Ampere type that arise from this will be investigated as well as complex analogues. These equations provide new processes for interpolation between Banach spaces and new notions of optimal transportation.
这个项目主要集中在几何分析中的问题,这些问题可以被表述为广义的Monge-Ampere类型的偏微分方程。一般来说,在这个建议中开发的分析和几何技术应该是有用的研究人员在几何,物理和其他地方工作。一方面,加深我们对卡勒流形上的正则几何和卡-丘流形上的拉格朗日量的理解,似乎是试图模拟宇宙几何的物理学家感兴趣的。另一方面,这些规范几何与数学中各种各样的既定领域有关系。此外,Monge-Ampere型方程出现在纯数学和应用数学中的各种问题中,并且具有广泛的现实应用,例如气象学和网络的优化设计。开发方法和技术来构造和近似解这些方程,并研究其规律性,可以在这些方程出现的其他情况下应用。最后,勒让德变换是数学、力学和经济学中的经典工具,寻求将这一理论推广到其他环境,如本项目中,可以找到广泛的应用。本项目中提出的一些方程是新的,不属于传统的Monge-Ampere型方程,并且具有令人兴奋的新几何应用,需要新的分析工具。在这项研究中的一个新的特点是应用几种不同的微局部分析工具,传统上属于线性问题,研究这些完全非线性方程。另一个主题是研究凸分析与几何以及复分析与几何之间的新颖关系。研究的问题包括:(1)具有圆锥奇点的Kahler-Einstein度规。这些度量为代数几何和复几何提供了一种新的强有力的分析工具。(2)PI将研究特殊拉格朗日方程的新退化版本。它支配着卡-丘流形上的正拉格朗日空间中的测地线。了解这个方程的解决方案需要新的方法,并将有特殊的拉格朗日的存在性和唯一性,奇异的拉格朗日平均曲率流,拓扑空间的拉格朗日,和拉格朗日相交理论的应用。(3)PI将使用空间中的测地线,有限维Bergman近似,具有复相位的傅立叶积分算子以及该空间的度量空间几何来研究Kahler度量的空间。(4)PI正在开发复杂和凸几何之间的相互作用,包括与勒让德变换的已知理论并行的极性变换的微分理论。由此产生的新的方程的哈密顿-雅可比和蒙日-安培型将被调查,以及复杂的类似物。这些方程提供了新的Banach空间之间的插值过程和新的概念的最佳运输。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yanir Rubinstein其他文献

Yanir Rubinstein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yanir Rubinstein', 18)}}的其他基金

Microlocal Analysis and Monge-Ampère Type Equations in Geometry
几何中的微局域分析和 Monge-Ampère 型方程
  • 批准号:
    2204347
  • 财政年份:
    2022
  • 资助金额:
    $ 19.45万
  • 项目类别:
    Standard Grant
I-Corps: Optimization Applications of Differential Geometry and Optimal Transport
I-Corps:微分几何和最优传输的优化应用
  • 批准号:
    2129211
  • 财政年份:
    2021
  • 资助金额:
    $ 19.45万
  • 项目类别:
    Standard Grant
Microlocal Analysis and Monge-Ampere Type Equations in Geometry
几何中的微局域分析和Monge-Ampere型方程
  • 批准号:
    1906370
  • 财政年份:
    2019
  • 资助金额:
    $ 19.45万
  • 项目类别:
    Standard Grant
Monge-Ampere equations and microlocal analysis on Kahler manifolds
Monge-Ampere 方程和 Kahler 流形上的微局域分析
  • 批准号:
    1206284
  • 财政年份:
    2012
  • 资助金额:
    $ 19.45万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0802923
  • 财政年份:
    2008
  • 资助金额:
    $ 19.45万
  • 项目类别:
    Fellowship Award

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Measurement, analysis and application of advanced lubricant materials
先进润滑材料的测量、分析与应用
  • 批准号:
    10089539
  • 财政年份:
    2024
  • 资助金额:
    $ 19.45万
  • 项目类别:
    Collaborative R&D
Biophilica - Analysis of bio-coatings as an alternative to PU-coatings for advanced product applications
Biophilica - 分析生物涂层作为先进产品应用的 PU 涂层的替代品
  • 批准号:
    10089592
  • 财政年份:
    2024
  • 资助金额:
    $ 19.45万
  • 项目类别:
    Collaborative R&D
Home Office Criminal Justice System Strategy Analysis Fellowship
内政部刑事司法系统战略分析奖学金
  • 批准号:
    ES/Y004906/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.45万
  • 项目类别:
    Fellowship
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.45万
  • 项目类别:
    Research Grant
Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
  • 批准号:
    EP/Z531133/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.45万
  • 项目类别:
    Research Grant
Capacity Assessment, Tracking, & Enhancement through Network Analysis: Developing a Tool to Inform Capacity Building Efforts in Complex STEM Education Systems
能力评估、跟踪、
  • 批准号:
    2315532
  • 财政年份:
    2024
  • 资助金额:
    $ 19.45万
  • 项目类别:
    Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 19.45万
  • 项目类别:
    Continuing Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
  • 批准号:
    2334874
  • 财政年份:
    2024
  • 资助金额:
    $ 19.45万
  • 项目类别:
    Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
  • 批准号:
    2331111
  • 财政年份:
    2024
  • 资助金额:
    $ 19.45万
  • 项目类别:
    Standard Grant
CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
  • 批准号:
    2348238
  • 财政年份:
    2024
  • 资助金额:
    $ 19.45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了