Microlocal Analysis and Monge-Ampère Type Equations in Geometry

几何中的微局域分析和 Monge-Ampère 型方程

基本信息

  • 批准号:
    2204347
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

This research project concerns questions in differential geometry that can be formulated in terms of nonlinear partial differential equations. One of the research themes is the existence of canonical geometries or shapes on spaces or manifolds, related to the original work of Riemann on curvature and Einstein's equations of general relativity. One example is the existence of Kähler-Einstein metrics with conic singularities; these structures turn out to be of central importance in mathematics and physics, and their theory involves developments in algebra, analysis, geometry, and topology. The analytic techniques to be developed in this project are expected to be useful to researchers working in geometry, physics, and related areas. Additionally, the project aims to develop better understanding of the complex Legendre transform, which could be useful in solving a range of partial differential equations, generalizing the theory for the Legendre transform that is a classical tool in mathematics, mechanics, and economics. The project involves research training of graduate students in related topics.Understanding Kähler-Einstein metrics with conic singularities will deepen understanding of smooth Kähler-Einstein metrics on both compact and non-compact Kähler manifolds, including Fano and Calabi-Yau spaces. These spaces are central in a wide variety of fields, ranging from algebraic geometry and number theory to theoretical physics where the Eguchi-Hanson metric appears. Monge-Ampère type equations arise in a wide variety of questions in pure and applied mathematics and have a wide range of practical applications. This project aims to develop methods to construct and approximate such solutions and to study their regularity, which will have applications in other instances where these equations appear. The project also intends to develop novel connections with algebraic geometry, convex geometry, and micro-local analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究项目涉及可以用非线性偏微分方程组表示的微分几何问题。其中一个研究主题是空间或流形上的正则几何或形状的存在,这与黎曼关于曲率和爱因斯坦广义相对论方程的原始工作有关。一个例子是具有圆锥奇点的Kähler-Einstein度量的存在;这些结构被证明在数学和物理中具有核心重要性,它们的理论涉及代数、分析、几何和拓扑学的发展。这个项目中将要开发的分析技术有望对从事几何、物理和相关领域工作的研究人员有用。此外,该项目旨在更好地了解复杂的勒让德变换,这可能有助于解决一系列偏微分方程式,推广勒让德变换的理论,勒让德变换是数学、力学和经济学中的经典工具。该项目涉及研究生相关主题的研究培训。理解具有二次奇点的Kähler-Einstein度量将加深对紧致和非紧Kähler流形(包括Fano和Calabi-Yau空间)上光滑Kähler-Einstein度量的理解。从代数几何和数论到出现江口-汉森度规的理论物理,这些空间在各种各样的领域中都是中心。Monge-Ampère方程出现在纯数学和应用数学中的许多问题中,并有着广泛的实际应用。该项目旨在开发构造和近似此类解的方法,并研究其正则性,这将在出现这些方程的其他情况下应用。该项目还打算发展与代数几何、凸几何和微观局部分析的新联系。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yanir Rubinstein其他文献

Yanir Rubinstein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yanir Rubinstein', 18)}}的其他基金

I-Corps: Optimization Applications of Differential Geometry and Optimal Transport
I-Corps:微分几何和最优传输的优化应用
  • 批准号:
    2129211
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Microlocal Analysis and Monge-Ampere Type Equations in Geometry
几何中的微局域分析和Monge-Ampere型方程
  • 批准号:
    1906370
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Microlocal Analysis and Monge-Ampere Type Equations in Geometry
几何中的微局域分析和Monge-Ampere型方程
  • 批准号:
    1515703
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Monge-Ampere equations and microlocal analysis on Kahler manifolds
Monge-Ampere 方程和 Kahler 流形上的微局域分析
  • 批准号:
    1206284
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0802923
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship Award

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Measurement, analysis and application of advanced lubricant materials
先进润滑材料的测量、分析与应用
  • 批准号:
    10089539
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
Biophilica - Analysis of bio-coatings as an alternative to PU-coatings for advanced product applications
Biophilica - 分析生物涂层作为先进产品应用的 PU 涂层的替代品
  • 批准号:
    10089592
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
Home Office Criminal Justice System Strategy Analysis Fellowship
内政部刑事司法系统战略分析奖学金
  • 批准号:
    ES/Y004906/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
  • 批准号:
    EP/Z531133/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Capacity Assessment, Tracking, & Enhancement through Network Analysis: Developing a Tool to Inform Capacity Building Efforts in Complex STEM Education Systems
能力评估、跟踪、
  • 批准号:
    2315532
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
  • 批准号:
    2334874
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
  • 批准号:
    2331111
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
  • 批准号:
    2348238
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了