Stochastic Equilibria and Related Topics in Financial Mathematics
随机均衡及金融数学中的相关主题
基本信息
- 批准号:1516165
- 负责人:
- 金额:$ 34.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator studies two problems related to behavior of financial markets. In the first he studies equilibrium in incomplete markets. The theory of market equilibrium is important because it provides a framework for understanding how prices develop in a market. Roughly speaking, a market is complete if every agent can trade with every other agent about every possible future state. The theory for complete markets has been worked out reasonably well, but the equilibrium of incomplete markets is open. In the second, he examines stochastic control problems that arise in considering how to make optimal investments with a random endowment. Formation of financial markets is a complex process, but ultimately reliant on fundamental economic principles. This reliance is what makes it amenable to mathematical analysis and quantitative study. The benefits of better understanding of how real financial markets come to exist, and how their salient features emerge from the basic building blocks, are multiple. They range from enhancing our ability to regulate both existing and nascent markets to building tools for prevention of future financial instabilities and crises in the US and worldwide. Graduate students are included in the project.The investigator and his students study two separate, but related, clusters of problems in mathematical finance and stochastic-control theory. The first one aims to elucidate the rational agents' optimal response to diverse market structures and the formation of incomplete financial markets. In addition to the classical, convex- and functional-analytic tools, the investigator's approach rests on stochastic analysis and the theory of backward stochastic differential equations, as well as their relationship with systems of partial differential equations, touching upon topics in Riemannian geometry and non-cooperative game theory. The second research focus -- centered around a novel class of stochastic control problems termed "weakly constrained" -- is modeled after one of the fundamental questions in mathematical finance, namely the optimal investment problem with a random endowment. These weakly constrained problems occur naturally and possess intriguing mathematical features, but resist analysis using standard approaches.
研究者研究了与金融市场行为相关的两个问题。 在第一本书中,他研究了不完全市场的均衡。 市场均衡理论很重要,因为它提供了一个理解市场价格如何发展的框架。 粗略地说,一个市场是完备的,如果每个代理人都可以与其他代理人就每一种可能的未来状态进行交易。 完全市场的理论已经相当完善,但不完全市场的均衡是开放的。 在第二部分,他考察了在考虑如何用随机禀赋进行最优投资时出现的随机控制问题。 金融市场的形成是一个复杂的过程,但最终取决于基本的经济原则。 这种依赖性使它适合于数学分析和定量研究。 更好地理解真实的金融市场是如何存在的,以及它们的显著特征是如何从基本组成部分中出现的,这有多种好处。 它们包括提高我们监管现有和新生市场的能力,以及建立预防美国和全球未来金融不稳定和危机的工具。 研究生也包括在这个项目中,研究者和他的学生研究两个独立但相关的数学金融和随机控制理论问题。 第一部分旨在阐明理性主体对不同市场结构的最优反应和不完全金融市场的形成。 除了经典的,凸和功能分析工具,调查员的方法依赖于随机分析和向后随机微分方程理论,以及它们与偏微分方程系统的关系,涉及黎曼几何和非合作博弈论的主题。 第二个研究重点-围绕一类新的随机控制问题称为“弱约束”-是仿照数学金融的基本问题之一,即最优投资问题与随机捐赠。 这些弱约束问题自然发生,具有有趣的数学特征,但抵制使用标准方法进行分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gordan Zitkovic其他文献
J un 2 00 7 Optimal Investment with an Unbounded Random Endowment and Utility-Based Pricing Methods
Jun 2 00 7 无界随机禀赋和基于效用的定价方法的最优投资
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
M. Owen;Gordan Zitkovic - 通讯作者:
Gordan Zitkovic
Financial equilibria in the semimartingale setting: Complete markets and markets with withdrawal constraints
半鞅设定下的金融均衡:完全市场和有撤回限制的市场
- DOI:
10.1007/s00780-005-0175-6 - 发表时间:
2007 - 期刊:
- 影响因子:1.7
- 作者:
Gordan Zitkovic - 通讯作者:
Gordan Zitkovic
ON AGENT’S AGREEMENT AND PARTIAL‐EQUILIBRIUM PRICING IN INCOMPLETE MARKETS
不完全市场下的代理协议与部分均衡定价
- DOI:
10.1111/j.1467-9965.2010.00405.x - 发表时间:
2008 - 期刊:
- 影响因子:1.6
- 作者:
Michail Anthropelos;Gordan Zitkovic - 通讯作者:
Gordan Zitkovic
Convex compactness and its applications
- DOI:
10.1007/s11579-010-0024-z - 发表时间:
2007-09 - 期刊:
- 影响因子:1.6
- 作者:
Gordan Zitkovic - 通讯作者:
Gordan Zitkovic
Dynamic Programming for Controlled Markov Families: Abstractly and over Martingale Measures
- DOI:
10.1137/130926481 - 发表时间:
2013-07 - 期刊:
- 影响因子:0
- 作者:
Gordan Zitkovic - 通讯作者:
Gordan Zitkovic
Gordan Zitkovic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gordan Zitkovic', 18)}}的其他基金
Three Topics in Stochastic Analysis: Kyle's model, Systems of BSDEs and Superrough volatility
随机分析的三个主题:凯尔模型、倒向随机微分方程系统和超粗糙波动性
- 批准号:
2307729 - 财政年份:2023
- 资助金额:
$ 34.7万 - 项目类别:
Standard Grant
Systems of Backward Stochastic Differential Equations and Applications in Stochastic Financial Equilibrium Theory
后向随机微分方程组及其在随机金融均衡理论中的应用
- 批准号:
1815017 - 财政年份:2018
- 资助金额:
$ 34.7万 - 项目类别:
Standard Grant
CAREER: Equilibria and Stability in Financial Markets
职业:金融市场的均衡与稳定
- 批准号:
0955614 - 财政年份:2010
- 资助金额:
$ 34.7万 - 项目类别:
Continuing Grant
AMC-SS: Stochastic Modeling and Methods in Financial Equilibrium Theory
AMC-SS:金融均衡理论中的随机建模和方法
- 批准号:
0706947 - 财政年份:2007
- 资助金额:
$ 34.7万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Conformational Equilibria of Biologically Important Saccharides and Related Biomolecules
合作研究:具有重要生物学意义的糖类和相关生物分子的构象平衡
- 批准号:
2002625 - 财政年份:2020
- 资助金额:
$ 34.7万 - 项目类别:
Standard Grant
Collaborative Research: Conformational Equilibria of Biologically Important Saccharides and Related Biomolecules
合作研究:具有重要生物学意义的糖类和相关生物分子的构象平衡
- 批准号:
2002628 - 财政年份:2020
- 资助金额:
$ 34.7万 - 项目类别:
Standard Grant
High-pressure phase equilibria of deep-mantle minerals and related materials by high-pressure experiments and calorimetry
通过高压实验和量热法研究深部地幔矿物和相关材料的高压相平衡
- 批准号:
17H02986 - 财政年份:2017
- 资助金额:
$ 34.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
High-pressure phase equilibria and thermodynamic properties of silicate minerals and related materials in the lower mantle conditions
下地幔条件下硅酸盐矿物及相关材料的高压相平衡和热力学性质
- 批准号:
19340166 - 财政年份:2007
- 资助金额:
$ 34.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Thermodynamics, Phase Equilibria and Related Studies of Multi-Component Alloy Systems
多组分合金体系的热力学、相平衡及相关研究
- 批准号:
9421780 - 财政年份:1995
- 资助金额:
$ 34.7万 - 项目类别:
Continuing Grant
Phase Equilibria, Thermodynamics and Related Studies of Multi-Component Alloy Systems
多组分合金体系的相平衡、热力学及相关研究
- 批准号:
9115356 - 财政年份:1992
- 资助金额:
$ 34.7万 - 项目类别:
Continuing Grant
Phase Equilibria, Thermodynamics and Related Studies of Ternary and Higher Order Alloy Systems
三元及高阶合金体系的相平衡、热力学及相关研究
- 批准号:
8819758 - 财政年份:1989
- 资助金额:
$ 34.7万 - 项目类别:
Continuing Grant
Metamorphism and Mixed-Volatile Equilibria of Calcsilicate and Related Rocks
钙硅酸盐及相关岩石的变质作用和混合挥发分平衡
- 批准号:
8200169 - 财政年份:1982
- 资助金额:
$ 34.7万 - 项目类别:
Continuing Grant
Metamorphism and Mixed-Volatile Equilibria of Calc-Silicate and Related Rocks
硅酸钙及相关岩石的变质作用和混合挥发分平衡
- 批准号:
7922877 - 财政年份:1980
- 资助金额:
$ 34.7万 - 项目类别:
Continuing Grant
Metamorphism and Mixed-Volatile Equilibria of Calc-Silicate And Related Rocks
硅酸钙及相关岩石的变质作用和混合挥发分平衡
- 批准号:
7723020 - 财政年份:1978
- 资助金额:
$ 34.7万 - 项目类别:
Standard Grant