Computational Studies of Protein-Protein Interactions

蛋白质-蛋白质相互作用的计算研究

基本信息

  • 批准号:
    1517221
  • 负责人:
  • 金额:
    $ 101.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-15 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

One of the most basic questions about the protein molecules in the living cell is the manner by which they interact with one another. How proteins recognize and bind (stick) to the correct partner(s) is one of the ways information is communicated within and between the cells. This is how cells process information and make decisions at the molecular level. Atomic-level information is essential to explain the specific interactions between proteins in terms of structure and dynamics. The research project consists in developing and improving the computer-based approach of "molecular dynamics" to calculate and predict accurately how proteins bind to one another. Molecular dynamics (MD) consists of using Newton's classical equation, force = mass x acceleration, to simulate the motions of all the atoms as a function of time. The MD simulation, although an approximation to the real world, provides detailed information about the time course of the atomic motions that cannot be accessed experimentally. The approach based on atomic models and MD simulations is advantageous because it does not rely on any particular assumption about protein binding. Being able to predict the possible binding partners of a protein from computations will open the door to a much better understanding of living cells. In addition to developing methods that will be of broad utility to the scientific community, the project will provide inter-disciplinary training and mentoring to young scientists at the undergraduate and graduate level (including members of under-represented minorities), as well as outreach to high school students. The research project consists in improving the theoretical and computational methods to calculate and predict accurately how molecules bind to one another. According to the theory of statistical thermodynamics, the quantity that controls the association of molecules is the binding free energy. This mathematically well-defined quantity can be calculated using computer simulations of atomic models of the molecules of interest. Molecular dynamics (MD) simulation can help elucidate the fundamental principles governing the binding of biological molecules at the atomic level. MD consists of constructing detailed atomic models of the macromolecules and using Newton's classical equation, F=MA, to literally simulate the dynamical motions of all the atoms as a function of time. The microscopic forces (the "F" in Newton's equation) are approximated by using a potential function, also called a force field, constructed from simple analytical functions. Validating the accuracy of the force field is also an important use of computations based on MD simulations. The calculated trajectory, though an approximation to the real world, provides detailed information about the time course of the atomic motions, which is impossible to access experimentally. Efforts in this area are likely to have a large impact because biology is entering a quantitative era that requires an ability to predict the binding of molecules. The first specific objective of the research is the design and development of novel computational methodologies addressing the specific challenges presented by protein-protein interactions. Sampling the large number of accessible configurations of the solvated proteins is critical. Simply running longer unbiased MD is not going to lead to success, and special enhanced sampling methods are needed to achieve this. The second objective is to validate and test the computational methodology and assess the accuracy of the atomic force field on the basis of well-known protein-protein complexes. It is important to know if the results are correct for the binding free energy, the entropy and enthalpy decomposition, and the kinetic rate of association. In the last stage, the objectives are focused on testing the computational method with respect to increasingly challenging situations.This project is jointly funded by the Molecular Biophysics Cluster in the Division of Molecular and Cellular Biosciences in the Directorate for Biological Sciences and the Chemical Theory, Models, and Computational Methods Program in the Division of Chemistry in the Directorate of Mathematical and Physical Sciences.
关于活细胞中的蛋白质分子,最基本的问题之一是它们相互作用的方式。蛋白质如何识别并结合(粘连)到正确的伴侣(S)是细胞内和细胞之间信息交流的方式之一。这就是细胞在分子水平上处理信息和做出决定的方式。原子水平的信息对于从结构和动力学方面解释蛋白质之间的特定相互作用是必不可少的。该研究项目包括开发和改进基于计算机的“分子动力学”方法,以准确计算和预测蛋白质相互结合的方式。分子动力学(MD)包括使用牛顿的经典方程,力=质量x加速度,来模拟作为时间函数的所有原子的运动。MD模拟虽然接近真实世界,但提供了有关原子运动的时间进程的详细信息,这些信息无法通过实验获得。基于原子模型和分子动力学模拟的方法是有利的,因为它不依赖于任何关于蛋白质结合的特定假设。能够通过计算预测蛋白质可能的结合伙伴,将为更好地理解活细胞打开大门。除了开发对科学界具有广泛实用价值的方法外,该项目还将向本科生和研究生一级的年轻科学家(包括未被充分代表的少数群体成员)提供跨学科培训和指导,并向高中生提供外联服务。研究项目包括改进理论和计算方法,以准确计算和预测分子之间的结合方式。根据统计热力学理论,控制分子缔合的量是结合自由能。这个数学上定义明确的量可以使用感兴趣的分子的原子模型的计算机模拟来计算。分子动力学(MD)模拟有助于阐明在原子水平上控制生物分子结合的基本原理。MD包括构建大分子的详细原子模型,并使用牛顿的经典方程F=MA来真实地模拟所有原子作为时间函数的动态运动。微观力(牛顿方程中的“F”)是用由简单的解析函数构造的势函数(也称为力场)来近似的。验证力场的准确性也是基于MD模拟的计算的重要用途。计算出的轨迹虽然接近真实世界,但提供了有关原子运动的时间进程的详细信息,这是不可能通过实验获得的。这一领域的努力可能会产生重大影响,因为生物学正在进入一个量化时代,需要有能力预测分子的结合。这项研究的第一个具体目标是设计和开发新的计算方法,以应对蛋白质-蛋白质相互作用带来的具体挑战。对大量可获得的溶剂化蛋白质构型进行采样是至关重要的。简单地运行更长时间的无偏MD不会带来成功,需要特殊的增强抽样方法来实现这一点。第二个目标是验证和测试计算方法,并根据众所周知的蛋白质-蛋白质复合体评估原子力场的准确性。重要的是要知道结合自由能、熵和热分解以及缔合动力学速度的结果是否正确。在最后阶段,目标是针对日益严峻的情况测试计算方法。该项目由生物科学局分子和细胞生物科学部的分子生物物理学小组和数学和物理科学局化学部的化学理论、模型和计算方法计划联合资助。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benoit Roux其他文献

Molecular Dynamics Simulation of Phospholipid Bilayers and Monolayers Using a Polarizable Force Field
  • DOI:
    10.1016/j.bpj.2009.12.061
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Edward Harder;Benoit Roux;Alex D. MacKerell
  • 通讯作者:
    Alex D. MacKerell
Ion-Selectivity of Externally Facing Na<sup>+</sup>-Exclusive and Na<sup>+</sup>/K<sup>+</sup>-Shared Sites in the Na/K-Pump
  • DOI:
    10.1016/j.bpj.2009.12.909
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Gail Virgin;Ian Ratheal;Siddhartha Yaragatupalli;Haibo Yu;Benoit Roux;Craig Gatto;Pablo Artigas
  • 通讯作者:
    Pablo Artigas
Characterization of Conformational Transitions in Src Kinase using the String Method with Swarms-of-Trajectories and Markovian Milestoning
  • DOI:
    10.1016/j.bpj.2009.12.1256
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Wenxun Gan;Benoit Roux
  • 通讯作者:
    Benoit Roux
Microscopic Mechanism of Ion Selectivity in the Nak Pump
  • DOI:
    10.1016/j.bpj.2009.12.1789
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Haibo Yu;Pablo Artigas;Benoit Roux
  • 通讯作者:
    Benoit Roux
Unveiling the reaction mechanism of bruton's tyrosine kinase inhibition by ibrutinib
  • DOI:
    10.1016/j.bpj.2021.11.2670
  • 发表时间:
    2022-02-11
  • 期刊:
  • 影响因子:
  • 作者:
    Angela M. Barragan;Benoit Roux
  • 通讯作者:
    Benoit Roux

Benoit Roux的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benoit Roux', 18)}}的其他基金

Computational studies of P-type ATPase ion pumps
P型ATP酶离子泵的计算研究
  • 批准号:
    2309048
  • 财政年份:
    2023
  • 资助金额:
    $ 101.46万
  • 项目类别:
    Standard Grant
The free energy landscapes governing the function of complex biomolecular machines
控制复杂生物分子机器功能的自由能景观
  • 批准号:
    1640888
  • 财政年份:
    2016
  • 资助金额:
    $ 101.46万
  • 项目类别:
    Standard Grant
Free Energies in Biomolecular Systems: Development and Applications of Theoretical and Computational Approaches
生物分子系统中的自由能:理论和计算方法的发展和应用
  • 批准号:
    0920261
  • 财政年份:
    2009
  • 资助金额:
    $ 101.46万
  • 项目类别:
    Continuing Grant
Free Energies in Biomolecular Systems: Theoretical Development and Application of Computational Approaches
生物分子系统中的自由能:计算方法的理论发展和应用
  • 批准号:
    0630140
  • 财政年份:
    2005
  • 资助金额:
    $ 101.46万
  • 项目类别:
    Continuing Grant
Free Energies in Biomolecular Systems: Theoretical Development and Application of Computational Approaches
生物分子系统中的自由能:计算方法的理论发展和应用
  • 批准号:
    0415784
  • 财政年份:
    2004
  • 资助金额:
    $ 101.46万
  • 项目类别:
    Continuing Grant
Free Energies in Biomolecular Systems: Development and Application of Computational Approaches
生物分子系统中的自由能:计算方法的开发和应用
  • 批准号:
    0110847
  • 财政年份:
    2001
  • 资助金额:
    $ 101.46万
  • 项目类别:
    Continuing Grant

相似海外基金

Diversity Supplement: Computational and Experimental Studies of Protein Structure and Design
多样性补充:蛋白质结构和设计的计算和实验研究
  • 批准号:
    10579649
  • 财政年份:
    2022
  • 资助金额:
    $ 101.46万
  • 项目类别:
Computational and Experimental Studies of Protein Structure and Design
蛋白质结构和设计的计算和实验研究
  • 批准号:
    10554322
  • 财政年份:
    2022
  • 资助金额:
    $ 101.46万
  • 项目类别:
Computational and Experimental Studies of Protein Structure and Design
蛋白质结构和设计的计算和实验研究
  • 批准号:
    10727023
  • 财政年份:
    2022
  • 资助金额:
    $ 101.46万
  • 项目类别:
Computational and Experimental Studies of Protein Structure and Design
蛋白质结构和设计的计算和实验研究
  • 批准号:
    10793426
  • 财政年份:
    2022
  • 资助金额:
    $ 101.46万
  • 项目类别:
Computational and Experimental Studies of Protein Structure and Design
蛋白质结构和设计的计算和实验研究
  • 批准号:
    10330495
  • 财政年份:
    2022
  • 资助金额:
    $ 101.46万
  • 项目类别:
Understanding mechanism of action: Combined computational and structural biology studies to determine small molecule effects on protein dynamics and function
了解作用机制:结合计算和结构生物学研究来确定小分子对蛋白质动力学和功能的影响
  • 批准号:
    555689-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 101.46万
  • 项目类别:
    Alliance Grants
Understanding mechanism of action: Combined computational and structural biology studies to determine small molecule effects on protein dynamics and function
了解作用机制:结合计算和结构生物学研究来确定小分子对蛋白质动力学和功能的影响
  • 批准号:
    555689-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 101.46万
  • 项目类别:
    Alliance Grants
Understanding mechanism of action: Combined computational and structural biology studies to determine small molecule effects on protein dynamics and function
了解作用机制:结合计算和结构生物学研究来确定小分子对蛋白质动力学和功能的影响
  • 批准号:
    555689-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 101.46万
  • 项目类别:
    Alliance Grants
RAPID: Computational studies of the structural dynamics, function and inhibition of the SARS-CoV-2 coronavirus spike protein
RAPID:SARS-CoV-2 冠状病毒刺突蛋白的结构动力学、功能和抑制的计算研究
  • 批准号:
    2028443
  • 财政年份:
    2020
  • 资助金额:
    $ 101.46万
  • 项目类别:
    Standard Grant
Design of beta-barrel type transmembrane protein complex by combination of computational and experimental studies
通过计算和实验研究相结合设计β-桶型跨膜蛋白复合物
  • 批准号:
    19KK0178
  • 财政年份:
    2019
  • 资助金额:
    $ 101.46万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了