Computational and Experimental Studies of Protein Structure and Design
蛋白质结构和设计的计算和实验研究
基本信息
- 批准号:10727023
- 负责人:
- 金额:$ 7.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAlgorithm DesignAlgorithmsAntibodiesAntigensAreaBindingBiochemicalBiologicalCellsCombinatorial OptimizationComputational GeometryComputer ModelsComputer softwareComputing MethodologiesDiseaseDisease ResistanceDrug DesignDrug TargetingDrug resistanceFutureGenerationsGoalsHumanIn VitroInvestigationMachine LearningMeasurementMeasuresMethodologyMethodsModelingMolecularMolecular BiologyMorbidity - disease rateMutationProbabilityProcessProgram SustainabilityProtein DynamicsProtein EngineeringProteinsResearchResearch Project GrantsResistanceStructureSystemTechniquesTechnologyTestingTherapeuticTherapeutic InterventionViral Antibodiesbiophysical propertiescomputer studiesdata modelingdesigndrug candidateexperimental studyimprovedin vivoinhibitormortalityneutralizing antibodynew therapeutic targetnovelnovel therapeuticsopen sourcepharmacologicprotein protein interactionprotein structureresilienceresistance mutationresponse
项目摘要
Project Summary. The determination of three-dimensional protein structures is essential for revealing molecular
mechanism of disease processes, and also for structure-based drug design. Concomitantly, technological advances in
protein design could revolutionize therapeutic treatment. With these advances, proteins and other molecules can be
designed to act on today’s undruggable proteins or tomorrow’s drug-resistant diseases. This proposed MIRA research
project focuses on computational and experimental studies of protein structure and design (PS&D). The interlocking goals
are to (A) determine protein structure and dynamics in systems of biomedical importance; and (B) design proteins,
inhibitors, and their molecular interactions, especially to predict and overcome resistance.
We develop novel algorithms in structural molecular biology. To surmount the challenges proposed herein, our algorithms
exploit combinatorial optimization, computational geometry and topology, and integrate advanced machine learning
techniques. We believe software for PS&D must be I) Open-Source and II) Free software. This is the goal of OSPREY. Thus,
we will (C) continue to develop free, open-source algorithms and software not only for challenging problems in the design
of proteins and their interactions, but also to determine difficult protein structures and characterize their dynamics.
We will use structural data and computational models to understand molecular mechanism and the basis of therapeutic
interventions, and perform detailed experimental measurements in vitro and in vivo to confirm, iterate, and improve both
our understanding of protein structure and molecular designs. The resulting models of protein structures and dynamics,
together with our novel design methodology, will illuminate targets of biochemical and pharmacological significance. We
will also advance PS&D by making algorithmic and modeling advances. We will test our methods and predictions by
creating designed protein and inhibitor constructs, solving empirical structures, and performing in vitro experiments to
measure enhanced biophysical properties on purified components, and in-cell experiments to measure biological efficacy.
We will apply our PS&D algorithms to several areas of biomedical importance. We will solve structures of systems under
our investigation and further develop the paradigm of protein structure as a continuous probability distribution. A set of
synergistic research thrusts is proposed, in which, for example, we will (1) predict future resistance mutations in protein
targets of novel drugs, (2) design protein-protein interaction (PPI) inhibitors that target “undruggable” proteins, and (3)
use our PS&D methodology to characterize and design antibody:antigen constructs, with the ultimate goal of creating
pan-neutralizing antibodies for viral targets. Our sustained program in developing novel computational methods to
accurately predict potential drug target mutations in response to early-stage leads should drive the design of more
resilient and durable first-generation drug candidates.
项目摘要。蛋白质三维结构的确定是揭示分子水平的基础
疾病过程的机制,以及基于结构的药物设计。随之而来的是,
蛋白质设计可能会给治疗带来革命性的变化。有了这些进步,蛋白质和其他分子可以
旨在对今天无法用药的蛋白质或明天的抗药性疾病起作用。这项提议的Mira研究
该项目专注于蛋白质结构和设计(PS&D)的计算和实验研究。相互关联的目标
是(A)确定具有生物医学重要性的系统中的蛋白质结构和动力学;以及(B)设计蛋白质,
抑制剂及其分子相互作用,特别是用于预测和克服耐药性。
我们在结构分子生物学中开发了新的算法。为了克服这里提出的挑战,我们的算法
利用组合优化、计算几何和拓扑,并集成高级机器学习
技巧。我们相信PS&D的软件必须是i)开源软件和ii)自由软件。这是鱼鹰的目标。因此,
我们将(C)继续开发自由、开放源码的算法和软件,而不仅仅是针对设计中的挑战性问题
这不仅是为了研究蛋白质及其相互作用,而且也是为了确定复杂的蛋白质结构和表征它们的动力学。
我们将使用结构数据和计算模型来理解分子机制和治疗的基础
干预,并在体外和体内进行详细的实验测量,以确认、重复和改进两者
我们对蛋白质结构和分子设计的理解。由此产生的蛋白质结构和动力学模型,
与我们新颖的设计方法一起,将阐明生物化学和药理学意义的目标。我们
还将通过在算法和建模方面的进步来推进PS&D。我们将通过以下方式测试我们的方法和预测
创建设计的蛋白质和抑制剂结构,求解经验结构,并进行体外实验
测量提纯组件的增强生物物理特性,并进行细胞内实验以测量生物功效。
我们将把我们的PS&D算法应用到生物医学的几个重要领域。我们将在以下条件下解决系统结构
我们的研究进一步发展了蛋白质结构为连续概率分布的范式.一套
提出了协同研究的推动力,其中,例如,我们将(1)预测未来蛋白质的抗药性突变
新药的靶点,(2)设计蛋白质-蛋白质相互作用(PPI)抑制剂,以“无法下药的”蛋白质为靶标,以及(3)
使用我们的PS&D方法来表征和设计抗体:抗原结构,最终目标是创造
针对病毒靶标的泛中和抗体。我们在开发新的计算方法方面的持续计划
针对早期先导准确预测潜在的药物靶点突变应该会推动更多药物的设计
坚韧耐用的第一代候选药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce R. Donald其他文献
Discovery, characterization, and redesign of potent antimicrobial thanatin orthologs from emChinavia ubica/em and emMurgantia histrionica/em targeting emE. coli/em LptA
从 emChinavia ubica/em 和 emMurgantia histrionica/em 中发现、表征和重新设计针对 emE. coli/em LptA 的强效抗菌 thanatin 直系同源物
- DOI:
10.1016/j.yjsbx.2023.100091 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:5.100
- 作者:
Kelly Huynh;Amanuel Kibrom;Bruce R. Donald;Pei Zhou - 通讯作者:
Pei Zhou
Resistor: an algorithm for predicting resistance mutations using Pareto optimization over multistate protein design and mutational signatures
Resistor:一种使用多态蛋白质设计和突变特征的帕累托优化来预测抗性突变的算法
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
N. Guerin;A. Feichtner;Eduard Stefan;T. Kaserer;Bruce R. Donald - 通讯作者:
Bruce R. Donald
span style=color:#0070C0;font-family:quot;Calibriquot;,quot;sans-serifquot;;font-size:12pt;An Efficient Parallel Algorithm for Accelerating Computational Protein Design/span
一种加速计算蛋白质设计的高效并行算法
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:5.8
- 作者:
Yichao Zhou;Wei Xu;Bruce R. Donald;Jianyang Zen - 通讯作者:
Jianyang Zen
A theory of manipulation and control for microfabricated actuator arrays
微加工执行器阵列的操纵和控制理论
- DOI:
10.1109/memsys.1994.555606 - 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
K. Bohringer;Bruce R. Donald;Robert Mihailovich;Noel C. MacDonald - 通讯作者:
Noel C. MacDonald
<span style="color:#0070C0;font-family:&quot;Calibri&quot;,&quot;sans-serif&quot;;font-size:12pt;">An Efficient Parallel Algorithm for Accelerating Computational Protein Design</span>
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:5.8
- 作者:
Yichao Zhou;Wei Xu;Bruce R. Donald;Jianyang Zen; - 通讯作者:
Bruce R. Donald的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce R. Donald', 18)}}的其他基金
Diversity Supplement: Computational and Experimental Studies of Protein Structure and Design
多样性补充:蛋白质结构和设计的计算和实验研究
- 批准号:
10579649 - 财政年份:2022
- 资助金额:
$ 7.89万 - 项目类别:
Computational and Experimental Studies of Protein Structure and Design
蛋白质结构和设计的计算和实验研究
- 批准号:
10554322 - 财政年份:2022
- 资助金额:
$ 7.89万 - 项目类别:
Computational and Experimental Studies of Protein Structure and Design
蛋白质结构和设计的计算和实验研究
- 批准号:
10793426 - 财政年份:2022
- 资助金额:
$ 7.89万 - 项目类别:
Computational and Experimental Studies of Protein Structure and Design
蛋白质结构和设计的计算和实验研究
- 批准号:
10330495 - 财政年份:2022
- 资助金额:
$ 7.89万 - 项目类别:
Automated NMR Assignment and Protein Structure Determination
自动 NMR 分配和蛋白质结构测定
- 批准号:
7940504 - 财政年份:2009
- 资助金额:
$ 7.89万 - 项目类别:
Computational Active-Site Redesign and Binding Prediction via Molecular Ensembles
通过分子整体的计算活性位点重新设计和结合预测
- 批准号:
8025987 - 财政年份:2008
- 资助金额:
$ 7.89万 - 项目类别:
Computational Active-Site Redesign and Binding Prediction via Molecular Ensembles
通过分子整体的计算活性位点重新设计和结合预测
- 批准号:
7462701 - 财政年份:2008
- 资助金额:
$ 7.89万 - 项目类别:
相似国自然基金
前沿多目标演化算法的优化理论与算法
设计
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
针对未来时变问题的新型离散鲁棒神经
网络算法设计与研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
面向去中心化边缘智能网络的理论分析与高
效学习算法设计
- 批准号:Q24F010041
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
分数扩散模型中的采样理论和算法设计
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
求解时变问题的数值算法:设计、分析与验证
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
多尺度特征驱动的理论研究与高效预条件算法设计
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
利用细胞内RNA结构信息结合深度学习算法设计高效细胞环境特异的CRISPR-Cas13d gRNA
- 批准号:32300521
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于超图的装填与覆盖问题的多项式时间可解性及近似算法设计研究
- 批准号:12361065
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
图机器学习的理论、模型与算法设计
- 批准号:62376007
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
REU Site: Algorithm Design --- Theory and Engineering
REU网站:算法设计---理论与工程
- 批准号:
2349179 - 财政年份:2024
- 资助金额:
$ 7.89万 - 项目类别:
Standard Grant
REU Site: Quantum Machine Learning Algorithm Design and Implementation
REU 站点:量子机器学习算法设计与实现
- 批准号:
2349567 - 财政年份:2024
- 资助金额:
$ 7.89万 - 项目类别:
Standard Grant
Product structures theorems and unified methods of algorithm design for geometrically constructed graphs
几何构造图的乘积结构定理和算法设计统一方法
- 批准号:
23K10982 - 财政年份:2023
- 资助金额:
$ 7.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algorithm Design in Strategic and Uncertain Environments
战略和不确定环境中的算法设计
- 批准号:
RGPIN-2016-03885 - 财政年份:2022
- 资助金额:
$ 7.89万 - 项目类别:
Discovery Grants Program - Individual
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
- 批准号:
DGECR-2022-00401 - 财政年份:2022
- 资助金额:
$ 7.89万 - 项目类别:
Discovery Launch Supplement
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
- 批准号:
RGPIN-2022-04570 - 财政年份:2022
- 资助金额:
$ 7.89万 - 项目类别:
Discovery Grants Program - Individual
Control Theory and Algorithm Design for Nonlinear Systems Based on Finite Dimensionality of Holonomic Functions
基于完整函数有限维的非线性系统控制理论与算法设计
- 批准号:
22K17855 - 财政年份:2022
- 资助金额:
$ 7.89万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Scalable Algorithm Design for Unbiased Estimation via Couplings of Markov Chain Monte Carlo Methods
通过马尔可夫链蒙特卡罗方法耦合进行无偏估计的可扩展算法设计
- 批准号:
2210849 - 财政年份:2022
- 资助金额:
$ 7.89万 - 项目类别:
Continuing Grant
Modern mathematical models of big data-driven problems in biological sequence analysis with applications to efficient algorithm design
生物序列分析中大数据驱动问题的现代数学模型及其在高效算法设计中的应用
- 批准号:
569312-2022 - 财政年份:2022
- 资助金额:
$ 7.89万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral