Regularity properties of solutions to the 3D Navier-Stokes equations

3D 纳维-斯托克斯方程解的正则性质

基本信息

  • 批准号:
    1517583
  • 负责人:
  • 金额:
    $ 25.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

CheskidovDMS-1517583 The investigator studies several fundamental open questions concerning the equations governing the motion of fluids, such as liquids or gases. These equations can explain and predict the pattern of circulation of the oceans, atmosphere, or blood in the cardiovascular system; predict changes in weather; describe the motion of a boat or an aircraft. They were introduced almost two centuries ago but are still not well understood mathematically. Even though the equations are broadly used by physicists and engineers for real-life applications, the existence and uniqueness of solutions are still not known. A mathematical proof of existence of solutions would justify the equations definitively. A mathematical proof of a loss of uniqueness of solutions would identify limitations of the equations. The project is also expected to shed light on certain fundamental issues related to turbulence. Turbulence, sometimes referred to as the last unsolved problem in classical physics, is a crucial phenomenon occurring in many fluid flows, for instance those around airplane bodies, vehicles, ships, and blades of turbines. A better mathematical understanding of turbulence would lead to improvements in the design of these objects. Eighty years ago, Leray suggested that turbulence was due to formation of singularities in the flow and introduced a notion of weak solutions to the three-dimensional Navier-Stokes equations. The notion became a basic concept in the theory of partial differential equations. The aim of this proposal is to study regularity properties of weak solutions to the three-dimensional Navier-Stokes equations and their relation to turbulence. One direction of this work is to construct weak solutions with various abnormal behaviors, such as norm inflation, discontinuity, or norm discontinuity. Such phenomena may be a result of an instantaneous blow-up from the right, which is much easier to control than a blow-up of a smooth solution. When the forcing term in the equations is large, the long-time behavior of solutions to the three-dimensional Navier-Stokes equations becomes very complicated and often chaotic. For fluid flows this phenomenon is known as turbulence. Even when a velocity field in a turbulent flow is chaotic, experimental and numerical evidence show that the averaged velocity still displays some regular structure. The investigator studies Leray-Hopf weak solutions to the Navier-Stokes equations and proves some of the empirical laws of turbulence, using the Littlewood-Paley and atomic decompositions of the velocity vector field.
CheskidovDMS-1517583 研究人员研究几个基本的开放性问题有关的方程的运动的流体,如液体或气体。 这些方程可以解释和预测海洋、大气或心血管系统中血液的循环模式;预测天气变化;描述船只或飞机的运动。 它们在两个世纪前就被引入了,但在数学上仍然没有得到很好的理解。 尽管这些方程被物理学家和工程师广泛用于实际应用,但解的存在性和唯一性仍然是未知的。 解的存在性的数学证明将明确地证明这些方程。 一个数学证明的唯一性的解决方案的损失将确定限制的方程。 该项目还有望阐明与湍流有关的某些基本问题。 湍流,有时被称为经典物理学中最后一个未解决的问题,是许多流体流动中发生的关键现象,例如飞机机身,车辆,船舶和涡轮机叶片周围的流体流动。 对湍流的更好的数学理解将有助于改进这些物体的设计。 八十年前,勒雷提出湍流是由于流动中奇点的形成,并引入了三维Navier-Stokes方程弱解的概念。 这个概念成为偏微分方程理论中的一个基本概念。 本文的目的是研究三维Navier-Stokes方程弱解的正则性及其与湍流的关系。 其中一个方向是构造具有各种异常行为的弱解,如范数膨胀、不连续或范数不连续。 这种现象可能是从右边瞬时爆破的结果,这比光滑解的爆破更容易控制。 当强迫项较大时,三维Navier-Stokes方程解的长时间行为变得非常复杂,常常是混沌的。 对于流体流动,这种现象被称为湍流。 即使湍流中的速度场是混沌的,实验和数值证据表明,平均速度仍然显示出一些规则的结构。 研究人员研究了Navier-Stokes方程的Leray-Hopf弱解,并使用Littlewood-Paley和速度矢量场的原子分解证明了湍流的一些经验定律。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Determining Wavenumber for the Nonautonomous Subcritical SQG Equation
非自治次临界SQG方程波数的确定
Energy equality for the Navier–Stokes equations in weak-in-time Onsager spaces
  • DOI:
    10.1088/1361-6544/ab60d3
  • 发表时间:
    2018-02
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    A. Cheskidov;Xiaoyutao Luo
  • 通讯作者:
    A. Cheskidov;Xiaoyutao Luo
Discontinuity of weak solutions to the 3D NSE and MHD equations in critical and supercritical spaces
临界和超临界空间中 3D NSE 和 MHD 方程弱解的不连续性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexey Cheskidov其他文献

The Existence of a Global Attractor for the Forced Critical Surface Quasi-Geostrophic Equation in $$L^2$$

Alexey Cheskidov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexey Cheskidov', 18)}}的其他基金

Intermittent Solutions of the Navier-Stokes Equations: From Onsager's Conjecture to Turbulence
纳维-斯托克斯方程的间歇解:从昂萨格猜想到湍流
  • 批准号:
    1909849
  • 财政年份:
    2019
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Standard Grant
A new approach to problems of global regularity for the 3D Navier-Stokes equations and other dissipative PDEs: the use of Kolmogorov's dissipation range and intermittency
解决 3D 纳维-斯托克斯方程和其他耗散偏微分方程全局正则性问题的新方法:使用柯尔莫哥洛夫耗散范围和间歇性
  • 批准号:
    1108864
  • 财政年份:
    2011
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Standard Grant
Regularity of the 3D Navier-Stokes equations in the largest critical space and related problems
最大临界空间中3D Navier-Stokes方程的正则性及相关问题
  • 批准号:
    0943680
  • 财政年份:
    2008
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Standard Grant
Regularity of the 3D Navier-Stokes equations in the largest critical space and related problems
最大临界空间中3D Navier-Stokes方程的正则性及相关问题
  • 批准号:
    0807827
  • 财政年份:
    2008
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Standard Grant

相似国自然基金

镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
  • 批准号:
    12375280
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
聚合铁-腐殖酸混凝沉淀-絮凝调质过程中絮体污泥微界面特性和群体流变学的研究
  • 批准号:
    20977008
  • 批准年份:
    2009
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
层状钴基氧化物热电材料的组织取向度与其性能关联规律研究
  • 批准号:
    50702003
  • 批准年份:
    2007
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Modelling extensional flow properties of solutions of polymers and thread-like micelles
模拟聚合物和线状胶束溶液的拉伸流动特性
  • 批准号:
    2323147
  • 财政年份:
    2023
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Standard Grant
Development of Nanochannel Membranes Having Rapid Transport Properties in Aqueous and Non-aqueous Solutions
开发在水和非水溶液中具有快速传输特性的纳米通道膜
  • 批准号:
    23K17369
  • 财政年份:
    2023
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Analysis on Qualitative Properties and Singularities of Solutions to k-Hessian Equation and k-curvature Equation
k-Hessian方程和k-曲率方程解的定性性质和奇异性分析
  • 批准号:
    22K03386
  • 财政年份:
    2022
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hydrothermal properties of complex aqueous solutions, and applications to ore-forming systems
复杂水溶液的水热性质及其在成矿系统中的应用
  • 批准号:
    RGPIN-2018-04370
  • 财政年份:
    2022
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Discovery Grants Program - Individual
Bridge Housing Solutions: An AI prediction engine (utilising NLP and contextual scoring) to match social housing properties and reduce the need for temporary accommodation
Bridge Housing Solutions:人工智能预测引擎(利用 NLP 和上下文评分)来匹配社会住房属性并减少临时住宿的需求
  • 批准号:
    10035267
  • 财政年份:
    2022
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Collaborative R&D
Development of asphalt solutions for paving applications with optimum environmental and engineering properties
开发具有最佳环境和工程性能的铺路应用沥青解决方案
  • 批准号:
    555488-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Alliance Grants
Stabilities and properties of high-pressure oxide phases containing Cr with focus on solid solutions of (Mg,Fe2+)3Fe2O6 – testing for possible precursor phases for inclusions in diamond
含 Cr 的高压氧化物相的稳定性和性能,重点关注 (Mg,Fe2)3Fe2O6 的固溶体 â 测试金刚石中夹杂物可能的前体相
  • 批准号:
    504772250
  • 财政年份:
    2022
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Research Grants
Hydrothermal properties of complex aqueous solutions, and applications to ore-forming systems
复杂水溶液的水热性质及其在成矿系统中的应用
  • 批准号:
    RGPIN-2018-04370
  • 财政年份:
    2021
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Discovery Grants Program - Individual
Properties of Solutions to Degenerate Elliptic Equations and Applications
简并椭圆方程解的性质及应用
  • 批准号:
    RGPIN-2017-04872
  • 财政年份:
    2021
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Discovery Grants Program - Individual
Research on deterioration and conservation of nature-based cultural properties as potential educational and tourism resources
作为潜在教育和旅游资源的自然文化财产的恶化和保护研究
  • 批准号:
    21H03726
  • 财政年份:
    2021
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了