SHF: Large:Collaborative Research: Inferring Software Specifications from Open Source Repositories by Leveraging Data and Collective Community Expertise
SHF:大型:协作研究:利用数据和集体社区专业知识从开源存储库推断软件规范
基本信息
- 批准号:1518897
- 负责人:
- 金额:$ 75.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Today individuals, society, and the nation critically depend on software to manage critical infrastructures for power, banking and finance, air traffic control, telecommunication, transportation, national defense, and healthcare. Specifications are critical for communicating the intended behavior of software systems to software developers and users and to make it possible for automated tools to verify whether a given piece of software indeed behaves as intended. Safety critical applications have traditionally enjoyed the benefits of such specifications, but at a great cost. Because producing useful, non-trivial specifications from scratch is too hard, time consuming, and requires expertise that is not broadly available, such specifications are largely unavailable. The lack of specifications for core libraries and widely used frameworks makes specifying applications that use them even more difficult. The absence of precise, comprehensible, and efficiently verifiable specifications is a major hurdle to developing software systems that are reliable, secure, and easy to maintain and reuse. This project brings together an interdisciplinary team of researchers with complementary expertise in formal methods, software engineering, machine learning and big data analytics to develop automated or semi-automated methods for inferring the specifications from code. The resulting methods and tools combine analytics over large open source code repositories to augment and improve upon specifications by program analysis-based specification inference through synergistic advances across both these areas. The broader impacts of the project include: transformative advances in specification inference and synthesis, with the potential to dramatically reduce, the cost of developing and maintaining high assurance software; enhanced interdisciplinary expertise at the intersection of formal methods software engineering, and big data analytics; Contributions to research-based training of a cadre of scientists and engineers with expertise in high assurance software.
如今,个人、社会和国家严重依赖软件来管理电力、银行和金融、空中交通管制、电信、交通、国防和医疗保健等关键基础设施。规范对于向软件开发人员和用户传达软件系统的预期行为以及使自动化工具验证给定的软件是否确实如预期的行为成为可能。安全关键型应用程序传统上享有此类规范的好处,但成本很高。因为从头开始生成有用的、重要的规范太难、太耗时,而且需要的专业知识并不广泛,所以这样的规范在很大程度上是不可用的。缺乏核心库和广泛使用的框架的规范,使得指定使用它们的应用程序变得更加困难。缺乏精确、可理解和可有效验证的规范是开发可靠、安全、易于维护和重用的软件系统的主要障碍。该项目汇集了一个跨学科的研究人员团队,他们在形式方法、软件工程、机器学习和大数据分析方面具有互补的专业知识,以开发从代码推断规范的自动化或半自动化方法。由此产生的方法和工具结合了对大型开放源代码存储库的分析,通过跨这两个领域的协同进步,通过基于程序分析的规范推理来增强和改进规范。该项目的更广泛影响包括:规范推理和综合方面的变革性进展,有可能大幅降低开发和维护高保证软件的成本;在正式方法、软件工程和大数据分析的交叉点上加强跨学科的专门知识;为以研究为基础培训一批具有高保证软件专门知识的科学家和工程师作出贡献。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
BCFA: Bespoke Control Flow Analysis for CFA at Scale
- DOI:10.1145/3377811.3380435
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Ramanathan Ramu;Ganesha Upadhyaya;H. Nguyen;Hridesh Rajan
- 通讯作者:Ramanathan Ramu;Ganesha Upadhyaya;H. Nguyen;Hridesh Rajan
DeepLocalize: Fault Localization for Deep Neural Networks
- DOI:10.1109/icse43902.2021.00034
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Mohammad Wardat;Wei Le;Hridesh Rajan
- 通讯作者:Mohammad Wardat;Wei Le;Hridesh Rajan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hridesh Rajan其他文献
Automating Cut-off for Multi-parameterized Systems
多参数化系统的自动切断
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Youssef Hanna;David Samuelson;Samik Basu;Hridesh Rajan - 通讯作者:
Hridesh Rajan
Intensional Effect Polymorphism
内涵效应多态性
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yuheng Long;Yu David Liu;Hridesh Rajan - 通讯作者:
Hridesh Rajan
Design Patterns : A Canonical Test of Unified Aspect Model
设计模式:统一方面模型的规范测试
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Hridesh Rajan;Kevin Sullivan - 通讯作者:
Kevin Sullivan
Gang-of-Four Design Patterns: A Case Study of the Unified Model and the Eos Programming Language
四联设计模式:统一模型和 Eos 编程语言的案例研究
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Hridesh Rajan - 通讯作者:
Hridesh Rajan
Design, Semantics and Implementation of the Ptolemy Programming Language: A Language with Quantified Typed Events
托勒密编程语言的设计、语义和实现:一种具有量化类型事件的语言
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Hridesh Rajan;G. Leavens - 通讯作者:
G. Leavens
Hridesh Rajan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hridesh Rajan', 18)}}的其他基金
SHF:Small: More Modular Deep Learning
SHF:Small:更加模块化的深度学习
- 批准号:
2223812 - 财政年份:2022
- 资助金额:
$ 75.01万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: ENS: Boa 2.0: Enhancing Infrastructure for Studying Software and its Evolution at a Large Scale
合作研究:CCRI:ENS:Boa 2.0:增强大规模研究软件及其演化的基础设施
- 批准号:
2120448 - 财政年份:2021
- 资助金额:
$ 75.01万 - 项目类别:
Standard Grant
HDR TRIPODS: D4 (Dependable Data-Driven Discovery) Institute
HDR TRIPODS:D4(可靠数据驱动的发现)研究所
- 批准号:
1934884 - 财政年份:2019
- 资助金额:
$ 75.01万 - 项目类别:
Continuing Grant
Travel Grant to Attend Big Data in Software Engineering Track
参加软件工程大数据课程的旅费补助
- 批准号:
1743070 - 财政年份:2017
- 资助金额:
$ 75.01万 - 项目类别:
Standard Grant
CI-EN: Boa: Enhancing Infrastructure for Studying Software and its Evolution at a Large Scale
CI-EN:Boa:增强大规模研究软件及其演化的基础设施
- 批准号:
1513263 - 财政年份:2015
- 资助金额:
$ 75.01万 - 项目类别:
Standard Grant
SHF: Small: Capsule-oriented Programming
SHF:小型:面向胶囊的编程
- 批准号:
1423370 - 财政年份:2014
- 资助金额:
$ 75.01万 - 项目类别:
Standard Grant
EAGER: Boa: A Community Research Infrastructure for Mining Software Repositories
EAGER:Boa:采矿软件存储库的社区研究基础设施
- 批准号:
1349153 - 财政年份:2013
- 资助金额:
$ 75.01万 - 项目类别:
Standard Grant
SHF: Small: Phase-Based Tuning for Better Utilization of Performance-Asymmetric Multicores
SHF:小型:基于相位的调整,以更好地利用性能不对称的多核
- 批准号:
1117937 - 财政年份:2011
- 资助金额:
$ 75.01万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Balancing Expressiveness and Modular Reasoning for Aspect-oriented Programming
SHF:小型:协作研究:平衡面向方面编程的表达性和模块化推理
- 批准号:
1017334 - 财政年份:2010
- 资助金额:
$ 75.01万 - 项目类别:
Continuing Grant
CAREER: On Mutualism of Modularity and Concurrency Goals
职业:模块化和并发目标的互惠性
- 批准号:
0846059 - 财政年份:2009
- 资助金额:
$ 75.01万 - 项目类别:
Continuing Grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 75.01万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 75.01万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 75.01万 - 项目类别:
Standard Grant
SHF: Large: Collaborative Research: Molecular computing for the real world
SHF:大型:协作研究:现实世界的分子计算
- 批准号:
1832985 - 财政年份:2018
- 资助金额:
$ 75.01万 - 项目类别:
Continuing Grant
SHF: Large: Collaborative Research: Next Generation Communication Mechanisms exploiting Heterogeneity, Hierarchy and Concurrency for Emerging HPC Systems
SHF:大型:协作研究:利用新兴 HPC 系统的异构性、层次结构和并发性的下一代通信机制
- 批准号:
1565336 - 财政年份:2016
- 资助金额:
$ 75.01万 - 项目类别:
Standard Grant
SHF: Large: Collaborative Research: Next Generation Communication Mechanisms exploiting Heterogeneity, Hierarchy and Concurrency for Emerging HPC Systems
SHF:大型:协作研究:利用新兴 HPC 系统的异构性、层次结构和并发性的下一代通信机制
- 批准号:
1565414 - 财政年份:2016
- 资助金额:
$ 75.01万 - 项目类别:
Standard Grant
SHF: Large: Collaborative Research: Exploiting the Naturalness of Software
SHF:大型:协作研究:利用软件的自然性
- 批准号:
1723215 - 财政年份:2016
- 资助金额:
$ 75.01万 - 项目类别:
Continuing Grant
SHF: Large: Collaborative Research: Next Generation Communication Mechanisms exploiting Heterogeneity, Hierarchy and Concurrency for Emerging HPC Systems
SHF:大型:协作研究:利用新兴 HPC 系统的异构性、层次结构和并发性的下一代通信机制
- 批准号:
1565431 - 财政年份:2016
- 资助金额:
$ 75.01万 - 项目类别:
Standard Grant
SHF: Large: Collaborative Research: Molecular computing for the real world
SHF:大型:协作研究:现实世界的分子计算
- 批准号:
1518715 - 财政年份:2015
- 资助金额:
$ 75.01万 - 项目类别:
Continuing Grant
SHF: Large: Collaborative Research: Molecular computing for the real world
SHF:大型:协作研究:现实世界的分子计算
- 批准号:
1518833 - 财政年份:2015
- 资助金额:
$ 75.01万 - 项目类别:
Continuing Grant














{{item.name}}会员




