Collaborative Research: Programmable chip-scale quantum photonics platform based on frequency-comb cluster-states for multicasting quantum networks

合作研究:基于频梳簇态的可编程芯片级量子光子平台,用于多播量子网络

基本信息

  • 批准号:
    1919355
  • 负责人:
  • 金额:
    $ 27.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

The field of quantum information science and technology hinges on unique quantum mechanical phenomena such as entanglement to enable unprecedented capabilities for communication, sensing, and computing. Among these technologies, quantum communication is foreseen to create broad near-term impacts as seen in recent quantum testbeds, teleportation, and entanglement distribution experiments. It is also envisaged to underpin future's fully connected quantum computers, quantum sensors, and a global secure communication network. Mainstream quantum communication platforms, however, rely on expensive, unscalable bulk optics components that impede their widespread deployment. While recent work on integrated quantum communication devices opens a new route to the development of compact quantum-communication systems, an integrated quantum photonics platform encompassing multiple, functional modules on a single chip to generate and process large-scale entanglement remains elusive. This collaborative project will develop a room-temperature integrated quantum photonics platform that incorporates quantum communication modules for scalable generation, processing, multicasting, and detection of large-scale multipartite entanglement in a quantum communication network. This project will leverage the nanofabrication and testing expertise at UCLA and the Interdisciplinary Quantum Information Research and Engineering (INQUIRE) testbed at the University of Arizona (UA) to demonstrate the capability of utilizing a highly compact and mass producible integrated platform to generate, multicast, and detect large-scale entanglement in a real-world setting. The outcome of the project will lay the foundation for future's quantum internet comprised of compact devices linked by large-scale multipartite entanglement. This project will educate and train the next-generation workforce for quantum information science and technology. Specifically, undergraduate and graduate students will grasp essential knowledge and expertise of nanophotonics and quantum information science and technology. They will gain hands-on experience while undertaking research in the INQUIRE testbed. This project will also provide opportunities for various industrial partners to be exposed to state-of-the-art tools grown out of nanophotonics and quantum information science and technology.Technical: The team will follow a system-level design approach for the integrated quantum photonics platform. The project will advance knowledge through a new quantum encoding-and-decoding paradigm that will be seamlessly incorporated into a physical architecture to offer intrinsic protection against loss. The physical architecture will consist of programmable quantum sources, processing units, and receivers using the silicon nitride material system that offer dramatic functionalities. Through ��(3 four-wave mixing in microring resonators and Mach-Zehnder interferometers, the silicon nitride chipset section will produce and process quantum signals with high fidelity and low loss. The silicon nitride section will also provide a classical frequency comb to serve as the pump for the microring resonators and phase references for the Mach-Zehnder interferometers. Programming of the quantum sources, processing units, and receivers will be by modulating the classical comb spectral lines in an integrated hybrid silicon section. In our frequency comb cluster system, the quantum signals will be immune to the programming-induced loss and disturbance. The integrated quantum photonics platform will be programmed to support two system-level quantum communication implementations: 1) a high-rate secure communication system based on quantum illumination; and 2) an entanglement multicasting and purification demonstration.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子信息科学与技术领域依赖于独特的量子力学现象,如纠缠,以实现前所未有的通信,传感和计算能力。在这些技术中,量子通信预计将在近期产生广泛的影响,如最近的量子试验台、隐形传态和纠缠分布实验。它还被设想为未来的全连接量子计算机、量子传感器和全球安全通信网络的基础。然而,主流的量子通信平台依赖于昂贵的、不可扩展的大块光学元件,这阻碍了它们的广泛部署。虽然最近在集成量子通信设备上的工作为紧凑量子通信系统的发展开辟了一条新途径,但在单个芯片上包含多个功能模块的集成量子光子学平台仍然难以产生和处理大规模纠缠。该合作项目将开发一个室温集成量子光子学平台,该平台集成了量子通信模块,用于量子通信网络中大规模多方纠缠的可扩展生成、处理、多播和检测。该项目将利用加州大学洛杉矶分校的纳米制造和测试专业知识,以及亚利桑那大学跨学科量子信息研究和工程(INQUIRE)测试平台,展示利用高度紧凑和可批量生产的集成平台在现实世界中生成、多播和检测大规模纠缠的能力。该项目的成果将为未来由大规模多方纠缠连接的紧凑设备组成的量子互联网奠定基础。该项目将教育和培训量子信息科学和技术的下一代劳动力。具体而言,本科生和研究生将掌握纳米光子学和量子信息科学与技术的基本知识和专业知识。他们将获得实践经验,同时在INQUIRE测试平台进行研究。该项目还将为各种工业合作伙伴提供机会,让他们接触到纳米光子学和量子信息科学与技术所产生的最先进的工具。技术:团队将遵循集成量子光子学平台的系统级设计方法。该项目将通过一种新的量子编码和解码范式来推进知识,该范式将无缝地整合到物理架构中,以提供防止损失的内在保护。物理架构将由可编程量子源、处理单元和使用氮化硅材料系统的接收器组成,这些系统提供了显著的功能。通过和# 55349;及# 57164;(3)在微环谐振器和Mach-Zehnder干涉仪中的四波混频,氮化硅芯片组部分将产生和处理高保真低损耗的量子信号。氮化硅部分还将提供一个经典的频率梳,作为微环谐振器的泵浦和马赫-曾德干涉仪的相位参考。量子源、处理单元和接收器的编程将通过调制集成混合硅截面中的经典梳状光谱线来实现。在我们的频率梳簇系统中,量子信号将不受编程引起的损失和干扰。集成量子光子学平台将被编程为支持两个系统级量子通信实现:1)基于量子照明的高速安全通信系统;2)纠缠多播及其净化演示。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A chip-scale polarization-spatial-momentum quantum SWAP gate in silicon nanophotonics
  • DOI:
    10.1038/s41566-023-01224-x
  • 发表时间:
    2023-06-15
  • 期刊:
  • 影响因子:
    35
  • 作者:
    Cheng, Xiang;Chang, Kai-Chi;Wong, Chee Wei
  • 通讯作者:
    Wong, Chee Wei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chee Wei Wong其他文献

Free-space terabit/s coherent optical links via platicon frequency microcombs
  • DOI:
    10.1186/s43593-025-00082-0
  • 发表时间:
    2025-05-20
  • 期刊:
  • 影响因子:
    32.100
  • 作者:
    Wenting Wang;Hao Liu;Jiagui Wu;James F. McMillan;Dong IL Lee;Futai Hu;Wenzheng Liu;Jinghui Yang;Hangbo Yang;Abhinav Kumar Vinod;Yahya H. Ezzeldin;Christina Fragouli;Mingbin Yu;Patrick Guo-Qiang Lo;Dim-Lee Kwong;Devin S. Kahrs;Ninghua Zhu;Chee Wei Wong
  • 通讯作者:
    Chee Wei Wong
Real-time transition dynamics and stability of chip-scale dispersion-managed frequency microcombs
芯片级色散管理频率微梳的实时过渡动力学和稳定性
  • DOI:
    10.1038/s41377-020-0290-3
  • 发表时间:
    2020-04-03
  • 期刊:
  • 影响因子:
    23.400
  • 作者:
    Yongnan Li;Shu-Wei Huang;Bowen Li;Hao Liu;Jinghui Yang;Abhinav Kumar Vinod;Ke Wang;Mingbin Yu;Dim-Lee Kwong;Hui-Tian Wang;Kenneth Kin-Yip Wong;Chee Wei Wong
  • 通讯作者:
    Chee Wei Wong
Block-MDS QC-LDPC Codes for Information Reconciliation in Key Distribution
用于密钥分配中信息协调的块 MDS QC-LDPC 码
  • DOI:
    10.48550/arxiv.2403.00192
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lev Tauz;Debarnab Mitra;Jayanth Shreekumar;M. Sarihan;Chee Wei Wong;Lara Dolecek
  • 通讯作者:
    Lara Dolecek
Dispersion-managed Hong-Ou-Mandel revival via a biphoton frequency comb
通过双光子频率梳进行色散管理的红欧曼德尔复兴
Interdisciplinary advances in microcombs: bridging physics and information technology
  • DOI:
    10.1186/s43593-024-00071-9
  • 发表时间:
    2024-10-10
  • 期刊:
  • 影响因子:
    32.100
  • 作者:
    Bai-Cheng Yao;Wen-Ting Wang;Zhen-Da Xie;Qiang Zhou;Teng Tan;Heng Zhou;Guang-Can Guo;Shi-Ning Zhu;Ning-Hua Zhu;Chee Wei Wong
  • 通讯作者:
    Chee Wei Wong

Chee Wei Wong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chee Wei Wong', 18)}}的其他基金

SWIFT: Coexisting spectrally-dense communications and passive sensing in directed multi-hop sub-millimeter-wave networks
SWIFT:在定向多跳亚毫米波网络中共存频谱密集通信和无源传感
  • 批准号:
    2229560
  • 财政年份:
    2022
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
NRT-QISE: Accelerating Interdisciplinary Frontiers in Quantum Sciences and Technologies (AIF-Q)
NRT-QISE:加速量子科学与技术的跨学科前沿(AIF-Q)
  • 批准号:
    2125924
  • 财政年份:
    2021
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
QuIC-TAQS: A high-dimensional multi-access scalable testbed for the interconnected quantum network
QuIC-TAQS:互连量子网络的高维多访问可扩展测试床
  • 批准号:
    2137984
  • 财政年份:
    2021
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
PFI-TT: A chip-scale laser sensing module for precision navigation and metrology
PFI-TT:用于精密导航和计量的芯片级激光传感模块
  • 批准号:
    2016561
  • 财政年份:
    2020
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
SBIR Phase I: Metasurface optical elements for augmented/mixed-reality smart glasses
SBIR 第一阶段:用于增强/混合现实智能眼镜的超表面光学元件
  • 批准号:
    2015151
  • 财政年份:
    2020
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
I-Corps: Chip-scale laser ranging module for precision autonomous navigation and vehicular safety
I-Corps:用于精确自主导航和车辆安全的芯片级激光测距模块
  • 批准号:
    2029811
  • 财政年份:
    2020
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
QII-TAQS: A Chip-Scale Spin-Photon Memory Interface with Coherence Exceeding One Second
QII-TAQS:相干性超过一秒的芯片级自旋光子存储器接口
  • 批准号:
    1936375
  • 财政年份:
    2019
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
SpecEES: A spectrally-dense 650-GHz photonic wireless backhaul via secure network coding
SpecEES:通过安全网络编码的光谱密集 650 GHz 光子无线回程
  • 批准号:
    1824568
  • 财政年份:
    2018
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
A terahertz spectrometer on a chip, at the thermodynamical limits
芯片上的太赫兹光谱仪,处于热力学极限
  • 批准号:
    1810506
  • 财政年份:
    2018
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
EFRI ACQUIRE: A chip-scale high-dimensional entanglement and quantum memory module for secure communications
EFRI ACQUIRE:用于安全通信的芯片级高维纠缠和量子存储模块
  • 批准号:
    1741707
  • 财政年份:
    2017
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Small: Enabling Programmable In-Network Security for an Attack-Resilient Smart Grid
协作研究:SaTC:核心:小型:为抵御攻击的智能电网实现可编程网内安全
  • 批准号:
    2247722
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: A Formal Verification and Implementation Stack for Programmable Logic Controllers
合作研究:FMitF:第一轨:可编程逻辑控制器的形式验证和实现堆栈
  • 批准号:
    2425711
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF Workshop on Automated, Programmable and Self Driving Labs
合作研究:NSF 自动化、可编程和自动驾驶实验室研讨会
  • 批准号:
    2335910
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF Workshop on Automated, Programmable and Self Driving Labs
合作研究:NSF 自动化、可编程和自动驾驶实验室研讨会
  • 批准号:
    2335909
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Enabling Programmable In-Network Security for an Attack-Resilient Smart Grid
协作研究:SaTC:核心:小型:为抵御攻击的智能电网实现可编程网内安全
  • 批准号:
    2247721
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Foundations of programmable living materials through synthetic biofilm engineering and quantitative computational modeling
合作研究:通过合成生物膜工程和定量计算建模为可编程生物材料奠定基础
  • 批准号:
    2214021
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Securing Next G Millimeter-Wave Communication in Programmable RF Environments with Reconfigurable Intelligent Surface (SECURIS)
协作研究:SaTC:核心:中:使用可重构智能表面 (SECURIS) 确保可编程射频环境中的下一代毫米波通信
  • 批准号:
    2318798
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF Workshop on Automated, Programmable and Self Driving Labs
合作研究:NSF 自动化、可编程和自动驾驶实验室研讨会
  • 批准号:
    2335908
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Programmable Computational Antennas for Sensing and Communications
合作研究:中枢神经系统核心:中:用于传感和通信的可编程计算天线
  • 批准号:
    2343964
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Securing Next G Millimeter-Wave Communication in Programmable RF Environments with Reconfigurable Intelligent Surface (SECURIS)
协作研究:SaTC:核心:中:使用可重构智能表面 (SECURIS) 确保可编程射频环境中的下一代毫米波通信
  • 批准号:
    2318796
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了