Collaborative Research: A Unified Approach to Quantum Tomography, Open Systems Control and Quantum Simulation

合作研究:量子断层扫描、开放系统控制和量子模拟的统一方法

基本信息

  • 批准号:
    1521431
  • 负责人:
  • 金额:
    $ 21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Information technology has been an engine for economic growth largely due to the trend known as Moore's law, whereby the component density and computational power of computer chips doubles approximately every two years. In the not too distant future the building blocks of these circuits is set to reach atomic scale, where the laws of quantum physics will replace the familiar laws of classical physics that govern our everyday world. Surprisingly, theoretical studies have shown that if we can manipulate and control quantum devices as well as we now manipulate and control classical devices, entirely new avenues will open up to process information according to quantum mechanics. As a result, quantum computers will in principle be able to solve some important computational problems exponentially faster than classical computers. It is also thought that a simpler class of devices, commonly referred to as analog quantum simulators, may provide approximate solutions to important problems in chemistry and materials science that are currently intractable. Though a functional quantum computer remains a distant goal, the transformative ideas of quantum computation and simulation hold promise to radically expand the capabilities of computer and information technology and sustain its future growth.This award builds on previous accomplishments by the Principal Investigators in the science and engineering field known as quantum control, which studies how physical devices governed by quantum mechanics can be manipulated and controlled with high precision, even in the presence of inevitable device imperfections and outside disturbances. The first objective of this award is to develop new techniques whereby one can evaluate and verify the operation of quantum devices. This will be done through the use of protocols known as quantum tomography, which determine the state and behavior of a quantum device through a series of carefully chosen measurements. The challenge will be to make these protocols more efficient, i. e., minimizing the number of measurements required, and also more robust, e. g., reliable in the presence of imperfections. The second objective of this award is to realize an analog quantum simulator based on a single atom. This single-atom device will be used to simulate a model system whose behavior is known to be chaotic, i. e., hypersensitive to imperfections and outside disturbances. By quantifying the accuracy of the simulator in the presence of known imperfections, this research will address essential but so far unanswered questions: How far can one trust the predictions of an analog quantum simulator in this challenging but common scenario? And can its accuracy and reliability be improved through state-of-the-art techniques for quantum control? The answer to these questions is relevant for large, federally funded research programs in analog quantum simulation at top research institutions across the US.State-of-the-art quantum control is approaching the thresholds for fault-tolerant operation on a few physical platforms and is steadily improving on many others. As a result, researchers are now pursuing architectures for rudimentary digital quantum computation and analog quantum simulation (AQS). To continue on this path towards useful quantum information processing (QIP), there is an urgent need for more sophisticated tools in the areas of quantum control and quantum tomography, and especially for protocols that are resistant to real-world errors and imperfections. Furthermore, the quantum information community is heavily invested in AQS under the assumption that errors are less critical than in a digital quantum computer. This makes it imperative to study the tolerance of AQS to errors, even in the absence of decoherence, and the prospects of robust control in the context of complex dynamics such as quantum chaos.This award will focus on quantum control and measurement, and their application in quantum tomography and analog quantum simulation. The work will build on well established ideas from optimal control and measurement theory, bringing these to bear on a unique experimental testbed: electron-nuclear spins of cold 133Cs atoms in their electronic ground state. This system provides long coherence times, can be manipulated with radio-frequency, microwave, and optical fields, is accessible to measurement though Stern-Gerlach analysis, and has a 16-dimensional Hilbert space, large enough to explore non-trivial tasks of QIP. With its proven capability to apply high-fidelity unitary maps and perform high-fidelity orthogonal measurements, the testbed provides the building blocks needed for QIP at levels of increasing complexity. The planned research is a mixture of theory and experiment, and will address topics in quantum measurement and tomography. In addition, analog quantum simulation, studying the quantum simulation of a spin-15/2 Quantum Kicked Top (QKT) and the use of the QKT paradigm to explore robust quantum simulation in the presence of chaos will be explored. Because the methodologies of robust control and tomography are independent of any particular platform, results from this award will serve as a benchmark for what can be achieved, and a template for similar advances elsewhere in laboratories working with different physical systems. This will help facilitate progress in the broader field of QIP.
信息技术一直是经济增长的引擎,这在很大程度上是由于所谓的摩尔定律的趋势,即计算机芯片的组件密度和计算能力大约每两年翻一番。在不久的将来,这些电路的构建模块将达到原子尺度,量子物理定律将取代我们日常生活中熟悉的经典物理定律。令人惊讶的是,理论研究表明,如果我们能够操纵和控制量子设备,就像我们现在操纵和控制经典设备一样,那么根据量子力学处理信息的全新途径将打开。因此,量子计算机原则上能够以比经典计算机更快的速度解决一些重要的计算问题。人们还认为,一种更简单的设备,通常被称为模拟量子模拟器,可以为目前难以解决的化学和材料科学中的重要问题提供近似解决方案。虽然功能性量子计算机仍然是一个遥远的目标,但量子计算和模拟的变革性思想有望从根本上扩展计算机和信息技术的能力,并维持其未来的发展。该奖项建立在主要研究人员在科学和工程领域(称为量子控制)的先前成就的基础上,它研究如何以高精度操纵和控制受量子力学支配的物理设备,即使存在不可避免的设备缺陷和外部干扰。 该奖项的第一个目标是开发新技术,从而可以评估和验证量子设备的操作。 这将通过使用称为量子断层扫描的协议来完成,该协议通过一系列精心选择的测量来确定量子设备的状态和行为。 挑战将是使这些协议更有效,即。例如,最小化所需的测量数量,并且也更鲁棒,e.例如,在一个实施例中,在存在缺陷的情况下可靠。 该奖项的第二个目标是实现基于单个原子的模拟量子模拟器。 这种单原子装置将被用来模拟一个行为已知是混沌的模型系统,即。例如,对缺陷和外界干扰敏感。 通过量化模拟器在存在已知缺陷的情况下的准确性,这项研究将解决重要但迄今尚未回答的问题:在这种具有挑战性但常见的情况下,人们可以在多大程度上信任模拟量子模拟器的预测? 它的准确性和可靠性是否可以通过最先进的量子控制技术来提高? 这些问题的答案与美国顶级研究机构的大型联邦资助的模拟量子模拟研究项目有关。最先进的量子控制正在接近少数物理平台上容错操作的阈值,并且正在稳步改进许多其他平台。因此,研究人员现在正在寻求基本的数字量子计算和模拟量子模拟(AQS)的架构。为了继续朝着有用的量子信息处理(QIP)的方向发展,迫切需要在量子控制和量子断层扫描领域提供更复杂的工具,特别是能够抵抗现实世界错误和缺陷的协议。此外,量子信息社区在AQS上投入了大量资金,假设错误不如数字量子计算机那么重要。这使得研究AQS对误差的容忍度(即使在没有退相干的情况下)以及在复杂动力学(如量子混沌)背景下的鲁棒控制前景成为当务之急。该奖项将重点关注量子控制和测量,以及它们在量子断层扫描和模拟量子模拟中的应用。 这项工作将建立在最佳控制和测量理论的成熟思想基础上,将这些思想应用于一个独特的实验测试平台:冷133 Cs原子在电子基态的电子核自旋。该系统提供了长的相干时间,可以用射频,微波和光场进行操作,可以通过Stern-Gerlach分析进行测量,并且具有16维希尔伯特空间,足以探索QIP的非平凡任务。凭借其经过验证的应用高保真酉映射和执行高保真正交测量的能力,该测试平台提供了QIP所需的构建模块,其复杂性不断增加。计划中的研究是理论和实验的混合,将涉及量子测量和断层扫描的主题。此外,模拟量子模拟,研究自旋15/2量子踢顶(QKT)的量子模拟和使用QKT范式来探索混沌存在下的稳健量子模拟。由于鲁棒控制和层析成像的方法独立于任何特定的平台,因此该奖项的结果将作为可以实现的基准,并为其他实验室使用不同物理系统的类似进展提供模板。这将有助于在更广泛的快速启动计划领域取得进展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ivan Deutsch其他文献

Ivan Deutsch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ivan Deutsch', 18)}}的其他基金

Collaborative Research: Advances in Quantum Control and Noise Mitigation on A Highly Accurate Testbed
合作研究:高精度测试台上量子控制和噪声抑制的进展
  • 批准号:
    2210013
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
FRHTP: Center for Quantum Information and Control
FRHTP:量子信息与控制中心
  • 批准号:
    2116246
  • 财政年份:
    2021
  • 资助金额:
    $ 21万
  • 项目类别:
    Cooperative Agreement
EAGER: QSA: Eigenstate Thermalization and the Quantum Metropolis Algorithm
EAGER:QSA:本征态热化和量子都会算法
  • 批准号:
    2037613
  • 财政年份:
    2020
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Controlling Nonclassical Atomic Spin Ensembles via Cavity-Enhanced Polarization Measurements
通过腔增强偏振测量控制非经典原子自旋系综
  • 批准号:
    2011582
  • 财政年份:
    2020
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantum Complexity, Chaos, and Implications for Analog Quantum Simulation
合作研究:量子复杂性、混沌以及对模拟量子模拟的影响
  • 批准号:
    1820758
  • 财政年份:
    2018
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
FRHTP: Center for Quantum Information and Control
FRHTP:量子信息与控制中心
  • 批准号:
    1630114
  • 财政年份:
    2016
  • 资助金额:
    $ 21万
  • 项目类别:
    Cooperative Agreement
Symmetric Many-Body Correlations in Atomic Ensembles
原子系综中的对称多体相关性
  • 批准号:
    1606989
  • 财政年份:
    2016
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Quantum Control, Measurement, and Information in Atomic Spin Ensembles
原子自旋系综中的量子控制、测量和信息
  • 批准号:
    1307520
  • 财政年份:
    2013
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Quantum Control of Mesoscopic Collective Spin States
介观集体自旋态的量子控制
  • 批准号:
    0969997
  • 财政年份:
    2010
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantum Control of Qudits and Quantum Transport in Optical Lattics
合作研究:光晶格中Qudits的量子控制和量子输运
  • 批准号:
    0903692
  • 财政年份:
    2009
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
  • 批准号:
    2311757
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
  • 批准号:
    2311756
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Towards Energy-Efficient Millimeter Wave Wireless Networks: A Unified Systems and Circuits Framework
合作研究:CCSS:迈向节能毫米波无线网络:统一系统和电路框架
  • 批准号:
    2242700
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
  • 批准号:
    2311758
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: CSR: Medium: Towards A Unified Memory-centric Computing System with Cross-layer Support
协作研究:CSR:中:迈向具有跨层支持的统一的以内存为中心的计算系统
  • 批准号:
    2310422
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCSS: Towards Energy-Efficient Millimeter Wave Wireless Networks: A Unified Systems and Circuits Framework
合作研究:CCSS:迈向节能毫米波无线网络:统一系统和电路框架
  • 批准号:
    2242701
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: CSR: Medium: Towards A Unified Memory-centric Computing System with Cross-layer Support
协作研究:CSR:中:迈向具有跨层支持的统一的以内存为中心的计算系统
  • 批准号:
    2310423
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: A Unified Framework for Analyzing Adaptive Stochastic Optimization Methods Based on Probabilistic Oracles
合作研究:AF:Small:基于概率预言的自适应随机优化方法分析统一框架
  • 批准号:
    2139735
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
U.S.-Ireland R&D Partnership: Collaborative Research: CNS Core: Medium: A unified framework for the emulation of classical and quantum physical layer networks
美国-爱尔兰 R
  • 批准号:
    2247007
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: A Unified Framework for Analyzing Adaptive Stochastic Optimization Methods Based on Probabilistic Oracles
合作研究:AF:Small:基于概率预言的自适应随机优化方法分析统一框架
  • 批准号:
    2140057
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了