Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
基本信息
- 批准号:2311756
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Effective management of scientific data produced by extreme-scale simulations and instruments is crucial for advancing scientific discoveries. Due to the scale of data and the diverse requirements of scientific analytics, there is a growing need to manage data in a progressive manner, such that users can stream as much data as they need to carry out their data analytics with reduced data movement and computation. However, little effort has been put into creating robust and scalable cyberinfrastructure services that link the recent algorithmic innovations in progressive methods with scientific data analytics, leaving these capabilities inaccessible to scientists. This project aims to develop a sustainable framework ProDM that supports the progressive management of scientific data to facilitate its use in scientific applications. The success of this project will enable new scientific research and novel findings by providing a new way to manage and analyze data. Furthermore, outcomes of this project will be delivered as publicly available software to enhance research cyberinfrastructure, promote education and teaching, and broaden participation in computing. ProDM is centered upon the unification of viable progressive representations and tailored development for in-situ and post-hoc analytic routines. In particular, it involves three key activities. First, a data engine will be built to unify state-of-the-art progressive representations, and provide portable hardware support for accelerators as well as interoperative software interfaces to other data management and analytic libraries. Second, an in-situ engine will be developed to facilitate the use of progressive representations for in-situ data analytics, which include a redesign of in-situ semantics and adjustment of runtime dynamics. Third, a post-hoc engine will be developed to efficiently access progressive data and improve the performance of data retrieval for post-hoc data analytics. ProDM will be deployed on campus-wide computing infrastructures and leadership systems for integration and evaluation with real-world scientific applications from climate, fusion, molecular dynamics, and beyond.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
有效管理极端规模模拟和仪器产生的科学数据对于推进科学发现至关重要。由于数据的规模和科学分析的不同要求,越来越需要以渐进的方式管理数据,使得用户可以流式传输尽可能多的数据,以便在减少数据移动和计算的情况下执行数据分析。然而,几乎没有努力创建强大且可扩展的网络基础设施服务,这些服务将最近的渐进方法中的算法创新与科学数据分析联系起来,使科学家无法获得这些功能。该项目旨在制定一个可持续的框架ProDM,支持科学数据的渐进管理,以促进其在科学应用中的使用。该项目的成功将通过提供管理和分析数据的新方法来实现新的科学研究和新的发现。此外,该项目的成果将作为公共软件提供,以加强研究网络基础设施,促进教育和教学,并扩大对计算的参与。ProDM的核心是统一可行的渐进式表示和针对现场和事后分析例程的定制开发。具体而言,它涉及三项关键活动。首先,将构建一个数据引擎,以统一最先进的渐进式表示,并为加速器提供便携式硬件支持,以及与其他数据管理和分析库的互操作软件接口。其次,将开发一个原位引擎,以促进使用渐进表示原位数据分析,其中包括重新设计原位语义和调整运行时动态。第三,将开发一个事后引擎,以有效地访问渐进数据,并提高事后数据分析的数据检索性能。ProDM将被部署在校园范围内的计算基础设施和领导系统上,用于与气候、聚变、分子动力学等现实科学应用的集成和评估。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xin Liang其他文献
Mesoporous Ceria-Supported Gold Catalysts Self-Assembled from Monodispersed Ceria Nanoparticles and Nanocubes: A Study of the Crystal Plane Effect for the Low-Temperature Water Gas Shift Reaction,chemcatchem
单分散二氧化铈纳米颗粒和纳米立方体自组装介孔二氧化铈负载金催化剂:低温水煤气变换反应晶面效应的研究,chemcatchem
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:4.5
- 作者:
Yeheng He;Yuanya Du;Jianwei Li;Runduo Zhang;Xin Liang;Biaohua Chen - 通讯作者:
Biaohua Chen
Convergence analysis of vector extended locally optimal block preconditioned extended conjugate gradient method for computing extreme eigenvalues
计算极值特征值的矢量扩展局部最优块预条件扩展共轭梯度法的收敛性分析
- DOI:
10.1002/nla.2445 - 发表时间:
2020-04 - 期刊:
- 影响因子:4.3
- 作者:
Peter Benner;Xin Liang - 通讯作者:
Xin Liang
Sex difference of mutation clonality in diffuse glioma evolution
弥漫性胶质瘤进化中突变克隆的性别差异
- DOI:
10.1093/neuonc/noy154 - 发表时间:
2018-09 - 期刊:
- 影响因子:0
- 作者:
Hongyi Zhang;Jianlong Liao;Xinxin Zhang;Erjie Zhao;Xin Liang;Shangyi Luo;Jian Shi;Fulong Yu;Jinyuan Xu;Weitao Shen;Yixue Li;Yun Xiao;Xia Li - 通讯作者:
Xia Li
A remarkable catalyst combination to widen the operating temperature window of the selective catalytic reduction of NO by NH3 (Cover Paper)
一种出色的催化剂组合,可拓宽 NH3 选择性催化还原 NO 的操作温度范围(封面论文)
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:4.5
- 作者:
Xin Liang;Biaohua Chen;D. Duprez;S. Royer - 通讯作者:
S. Royer
The effectiveness and safety of traditional Chinese medicine for the treatment of children with COVID-19
中医药治疗儿童COVID-19的有效性和安全性
- DOI:
10.1097/md.0000000000021247 - 发表时间:
2020 - 期刊:
- 影响因子:1.6
- 作者:
Yanqing Li;Lin Bi;Yulin Li;Xiongxin Hu;Quan Wang;Xin Liang;Xujun Yu;Liang Dong;Quan Xie - 通讯作者:
Quan Xie
Xin Liang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xin Liang', 18)}}的其他基金
RII Track-4: NSF: Scalable MPI with Adaptive Compression for GPU-based Computing Systems
RII Track-4:NSF:适用于基于 GPU 的计算系统的具有自适应压缩的可扩展 MPI
- 批准号:
2327266 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Topology-Aware Data Compression for Scientific Analysis and Visualization
合作研究:OAC 核心:用于科学分析和可视化的拓扑感知数据压缩
- 批准号:
2313122 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
CRII: OAC: Enabling Quantities-of-Interest Error Control for Trust-Driven Lossy Compression
CRII:OAC:为信任驱动的有损压缩启用感兴趣数量错误控制
- 批准号:
2330367 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: Research Workforce Development for Deep Learning Systems in Advanced GPU Cyberinfrastructure
协作研究:网络培训:试点:高级 GPU 网络基础设施中深度学习系统的研究人员开发
- 批准号:
2330364 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: Research Workforce Development for Deep Learning Systems in Advanced GPU Cyberinfrastructure
协作研究:网络培训:试点:高级 GPU 网络基础设施中深度学习系统的研究人员开发
- 批准号:
2230098 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
CRII: OAC: Enabling Quantities-of-Interest Error Control for Trust-Driven Lossy Compression
CRII:OAC:为信任驱动的有损压缩启用感兴趣数量错误控制
- 批准号:
2153451 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Elements: VLCC-States: Versioned Lineage-Driven Checkpointing of Composable States
协作研究:元素:VLCC-States:可组合状态的版本化谱系驱动检查点
- 批准号:
2411387 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: Elements: Linking geochemical proxy records to crustal stratigraphic context via community-interactive cyberinfrastructure
合作研究:要素:通过社区交互式网络基础设施将地球化学代理记录与地壳地层背景联系起来
- 批准号:
2311092 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: Elements: Lattice QCD software for nuclear physics on heterogeneous architectures
合作研究:Elements:用于异构架构核物理的 Lattice QCD 软件
- 批准号:
2311430 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
- 批准号:
2311757 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Monolithic 3D Integration (M3D) of 2D Materials-Based CFET Logic Elements towards Advanced Microelectronics
合作研究:FuSe:面向先进微电子学的基于 2D 材料的 CFET 逻辑元件的单片 3D 集成 (M3D)
- 批准号:
2329189 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
- 批准号:
2246686 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
- 批准号:
2246687 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: GEO-CM: The occurrences of the rare earth elements in highly weathered sedimentary rocks, Georgia kaolins.
合作研究:GEO-CM:强风化沉积岩、乔治亚高岭土中稀土元素的出现。
- 批准号:
2327660 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Monolithic 3D Integration (M3D) of 2D Materials-Based CFET Logic Elements towards Advanced Microelectronics
合作研究:FuSe:面向先进微电子学的基于 2D 材料的 CFET 逻辑元件的单片 3D 集成 (M3D)
- 批准号:
2329192 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: Elements: Linking geochemical proxy records to crustal stratigraphic context via community-interactive cyberinfrastructure
合作研究:要素:通过社区交互式网络基础设施将地球化学代理记录与地壳地层背景联系起来
- 批准号:
2311091 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant