Collaborative Research: Novel and Unified Statistical Learning Procedures for Massive Dynamic Multiple-Input, Multiple-Output Networks
协作研究:大规模动态多输入多输出网络的新颖且统一的统计学习程序
基本信息
- 批准号:1521761
- 负责人:
- 金额:$ 4.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is to develop an innovative, unified, and flexible methodology to model the input-output transformations in massive multiple-input, multiple-output (MIMO) networks. With the ability of modern technology to gather large volume of high-dimensional and inhomogeneous data, traditional techniques have become inadequate or incapable of modeling the underlying MIMO systems from the data. Novel statistical approaches and methods are needed for extracting knowledge from complex, large, inhomogeneous network data sets. This project seeks to develop new modeling techniques, statistical learning tools, and computational approaches geared towards gaining knowledge arising from different aspects of network data. This development starts with a novel functional dynamic model that accounts for inherent characteristics of network data, such as node latencies, dynamics associated with network coupling, etc. Next, the investigators will develop statistical inference tools to test and identify underlying inherent network connectivity. Furthermore, the investigators will develop statistical learning techniques for network state identification and change-point detection. This project will significantly enrich the toolkit for the analysis of massive network data by providing an alternative data-driven approach. These new tools are expected to provide new solutions to the existing problems and novel and creative solutions to unsolved problems. The research topics address many fundamental problems, for example dynamic modeling, parsimonious network representation, and network learning, for complex MIMO networks when the dimensionality (e.g., the number of nodes) and the sample size grow. It will enhance understanding of existing techniques in the big data context. More importantly, advanced modeling methodology and data analytical tools will be developed with fast-to-implement algorithms, which allow researchers and practitioners to explore, understand, and eventually reverse-engineer complex networks. The investigators will interact with researchers from different fields to derive and validate hypotheses and refine the design of experiments to provide deeper insight into system internals for potential scientific discovery.
该项目旨在开发一种创新、统一且灵活的方法来对大规模多输入多输出(MIMO)网络中的输入输出转换进行建模。随着现代技术能够收集大量高维和非均匀数据,传统技术已经变得不足或无法根据数据对底层 MIMO 系统进行建模。需要新的统计方法和方法来从复杂、大型、非均匀的网络数据集中提取知识。该项目旨在开发新的建模技术、统计学习工具和计算方法,旨在获取网络数据不同方面的知识。这一开发始于一种新颖的功能动态模型,该模型考虑了网络数据的固有特征,例如节点延迟、与网络耦合相关的动态等。接下来,研究人员将开发统计推理工具来测试和识别潜在的固有网络连接性。此外,研究人员将开发用于网络状态识别和变化点检测的统计学习技术。 该项目将通过提供另一种数据驱动的方法来显着丰富用于分析海量网络数据的工具包。这些新工具有望为现有问题提供新的解决方案,并为未解决的问题提供新颖且创造性的解决方案。研究主题解决了复杂 MIMO 网络在维度(例如节点数量)和样本量增长时的许多基本问题,例如动态建模、简约网络表示和网络学习。它将增强对大数据背景下现有技术的理解。更重要的是,先进的建模方法和数据分析工具将通过快速实施的算法来开发,使研究人员和从业者能够探索、理解并最终对复杂网络进行逆向工程。研究人员将与来自不同领域的研究人员互动,推导和验证假设,并完善实验设计,为潜在的科学发现提供对系统内部结构的更深入的了解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chunming Zhang其他文献
Prediction Error Estimation Under Bregman Divergence for Non‐Parametric Regression and Classification
- DOI:
10.1111/j.1467-9469.2008.00593.x - 发表时间:
2008-09 - 期刊:
- 影响因子:1
- 作者:
Chunming Zhang - 通讯作者:
Chunming Zhang
A 20Gbps CTLE with Active Inductor
具有有源电感器的 20Gbps CTLE
- DOI:
10.1109/icicm56102.2022.10011348 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Chunming Zhang;Yibo Wang;Mengxuan Xie;Desheng Zhang - 通讯作者:
Desheng Zhang
Estimation of false discovery proportion in multiple testing: From normal to chi-squared test statistics
多重测试中错误发现比例的估计:从正态检验统计到卡方检验统计
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Lilun Du;Chunming Zhang - 通讯作者:
Chunming Zhang
Nd0.5Sr0.5Fe0.8Cu0.2O3?dexSm0.2Ce0.8O1.9cobalt-free composite cathodes for intermediate temperature solid oxide fuel cells
用于中温固体氧化物燃料电池的Nd0.5Sr0.5Fe0.8Cu0.2O3·dexSm0.2Ce0.8O1.9无钴复合阴极
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:7.2
- 作者:
Chunming Zhang;Nguyen Q. Minh;Weimin Zhang;Zi-feng Ma - 通讯作者:
Zi-feng Ma
Assessing the equivalence of nonparametric regression tests based on spline and local polynomial smoothers
- DOI:
10.1016/j.jspi.2003.07.013 - 发表时间:
2004-11 - 期刊:
- 影响因子:0.9
- 作者:
Chunming Zhang - 通讯作者:
Chunming Zhang
Chunming Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chunming Zhang', 18)}}的其他基金
Structural Learning and Statistical Inference for Large-Scale Data
大规模数据的结构学习和统计推断
- 批准号:
2013486 - 财政年份:2020
- 资助金额:
$ 4.39万 - 项目类别:
Standard Grant
Statistical Inference for Large-Scale Structured Data with Dependence and Non-Stationarity
具有相关性和非平稳性的大规模结构化数据的统计推断
- 批准号:
1712418 - 财政年份:2017
- 资助金额:
$ 4.39万 - 项目类别:
Continuing Grant
Structural-Information Enhanced Inference for Large-Scale and High-Dimensional Data
大规模高维数据的结构信息增强推理
- 批准号:
1308872 - 财政年份:2013
- 资助金额:
$ 4.39万 - 项目类别:
Standard Grant
Dimension Reduction for Non-Regular Statistical Models with Applications
非正则统计模型降维及其应用
- 批准号:
1106586 - 财政年份:2011
- 资助金额:
$ 4.39万 - 项目类别:
Standard Grant
Regularization and Optimization for High Dimensional Regression and Classification with Biological Applications
生物应用中高维回归和分类的正则化和优化
- 批准号:
0705209 - 财政年份:2007
- 资助金额:
$ 4.39万 - 项目类别:
Standard Grant
Collaborative Research: FRG: New development on nonparametric modeling and inferences with biological applications
合作研究:FRG:非参数建模和生物学应用推论的新进展
- 批准号:
0353941 - 财政年份:2004
- 资助金额:
$ 4.39万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
- 批准号:
2347992 - 财政年份:2024
- 资助金额:
$ 4.39万 - 项目类别:
Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
- 批准号:
2347991 - 财政年份:2024
- 资助金额:
$ 4.39万 - 项目类别:
Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
- 批准号:
2346198 - 财政年份:2024
- 资助金额:
$ 4.39万 - 项目类别:
Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
- 批准号:
2346197 - 财政年份:2024
- 资助金额:
$ 4.39万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312872 - 财政年份:2023
- 资助金额:
$ 4.39万 - 项目类别:
Standard Grant
Collaborative Research: Enhanced Photolysis and Advanced Oxidation Processes by Novel KrCl* (222 nm) Irradiation
合作研究:通过新型 KrCl* (222 nm) 辐照增强光解和高级氧化过程
- 批准号:
2310137 - 财政年份:2023
- 资助金额:
$ 4.39万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
- 批准号:
2324033 - 财政年份:2023
- 资助金额:
$ 4.39万 - 项目类别:
Standard Grant
Collaborative Research: IHBEM: The fear of here: Integrating place-based travel behavior and detection into novel infectious disease models
合作研究:IHBEM:这里的恐惧:将基于地点的旅行行为和检测整合到新型传染病模型中
- 批准号:
2327797 - 财政年份:2023
- 资助金额:
$ 4.39万 - 项目类别:
Continuing Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
- 批准号:
2219796 - 财政年份:2023
- 资助金额:
$ 4.39万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 4.39万 - 项目类别:
Standard Grant














{{item.name}}会员




