Statistical Inference for Large-Scale Structured Data with Dependence and Non-Stationarity
具有相关性和非平稳性的大规模结构化数据的统计推断
基本信息
- 批准号:1712418
- 负责人:
- 金额:$ 12.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to address some challenging research problems, with a common theme of exploiting spatial-temporal dependence and non-stationarity in large-scale structured data, emerging from scientific studies in biology, genetics, astronomy, economics, neuroscience, geophysics, and meteorology among others. New tools will be developed for stochastic modeling, computational algorithms, and statistical inference applied to medical imaging data such as functional magnetic resonance imaging, neuron spike trains, genome-wide association studies, and building faster file access systems. It is anticipated that these new developments will allow scientists to efficiently analyze data with significantly increased flexibility and accuracy, and thus will have direct impacts on these applications to science, public health, and information technology. The research will also be integrated with educational practice through development of a seminar course on new statistical methods for analyzing spatially and temporally correlated imaging data. The project focuses on adequate accommodation of three fundamentally different types of spatial-temporal dependence structures. The research results aim to bridge the gap between the limited theory and methodology currently available and the broad and challenging scientific problems encountered in many applied fields. Motivated by fMRI data analysis, Project 1 explores a new semi-parametric inference procedure applicable to a broad class of "non-stationary non-Gaussian temporally dependent" error processes for time-course data collected at a given spatial point. A new test statistic will be developed, and its asymptotic properties will be established. Large-scale multiple testing tasks often exhibit dependence, and accounting for the dependence among individual non-Gaussian test statistics is an important, challenging, but unsolved problem in statistics. Motivated by challenges in detection of activated brain regions from fMRI studies and assessing association between single-nucleotide polymorphisms and a disease from GWAS studies, Project 2 proposes a new multiple testing framework for a diverging number of "correlated chi-squared test statistics with an arbitrary dependence structure." Motivated by applications in multiple neural spike train recordings with dependence in both time and space, Project 3 develops new integrative methods for learning the "sparse network structured dependence" among nodes underlying a wide class of multivariate point process data with non-stationary event times.
该项目旨在解决一些具有挑战性的研究问题,其共同主题是利用大规模结构化数据中的时空依赖性和非平稳性,这些问题来自生物学,遗传学,天文学,经济学,神经科学,生物物理学和气象学等科学研究。将开发新的工具,用于随机建模,计算算法和应用于医学成像数据的统计推断,如功能性磁共振成像,神经元尖峰序列,全基因组关联研究,以及构建更快的文件访问系统。预计这些新的发展将使科学家能够有效地分析数据,并显着提高灵活性和准确性,从而将对这些应用程序产生直接影响科学,公共卫生和信息技术。该研究还将通过开发一个关于分析空间和时间相关成像数据的新统计方法的研讨会课程,与教育实践相结合。该项目的重点是充分适应三个根本不同类型的时空依赖结构。研究成果旨在弥合目前可用的有限理论和方法与许多应用领域中遇到的广泛且具有挑战性的科学问题之间的差距。受fMRI数据分析的启发,项目1探索了一种新的半参数推断程序,适用于在给定空间点收集的时程数据的广泛的“非平稳非高斯时间依赖”误差过程。将开发一个新的检验统计量,并建立其渐近性质。大规模的多测试任务往往表现出相关性,而解释单个非高斯测试统计量之间的相关性是统计学中一个重要的、具有挑战性的但尚未解决的问题。受fMRI研究中检测激活脑区和GWAS研究中评估单核苷酸多态性与疾病之间关联的挑战的启发,项目2提出了一个新的多重检验框架,用于不同数量的“具有任意依赖结构的相关卡方检验统计量”。受时间和空间依赖性的多神经尖峰序列记录应用的启发,项目3开发了新的综合方法,用于学习节点之间的“稀疏网络结构依赖性”,这些节点是一类具有非平稳事件时间的多变量点过程数据的基础。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On simultaneous calibration of two-sample t-tests for high-dimension low-sample-size data
高维低样本数据双样本t检验的同时校准
- DOI:10.5705/ss.202018.0467
- 发表时间:2021
- 期刊:
- 影响因子:1.4
- 作者:Zhang, Chunming;Jia, Shengji;Wu, Yongfeng
- 通讯作者:Wu, Yongfeng
Robust estimation in regression and classification methods for large dimensional data
- DOI:10.1007/s10994-023-06349-2
- 发表时间:2023-07
- 期刊:
- 影响因子:7.5
- 作者:Chunming Zhang;Lixing Zhu;Yanbo Shen
- 通讯作者:Chunming Zhang;Lixing Zhu;Yanbo Shen
Empirical likelihood inference in autoregressive models with time-varying variances
- DOI:10.1080/24754269.2021.1913977
- 发表时间:2021-04
- 期刊:
- 影响因子:0.5
- 作者:Yu Han;Chunming Zhang
- 通讯作者:Yu Han;Chunming Zhang
Assessment of Projection Pursuit Index for Classifying High Dimension Low Sample Size Data in R
R 中高维低样本量数据分类的投影追踪指数评估
- DOI:10.6339/23-jds1096
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Wu, Zhaoxing;Zhang, Chunming
- 通讯作者:Zhang, Chunming
Further Examples Related to Correlations Between Variables and Ranks
与变量和排名之间的相关性相关的更多示例
- DOI:10.1080/00031305.2020.1831956
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Zhang, Chunming
- 通讯作者:Zhang, Chunming
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chunming Zhang其他文献
Nd0.5Sr0.5Fe0.8Cu0.2O3?dexSm0.2Ce0.8O1.9cobalt-free composite cathodes for intermediate temperature solid oxide fuel cells
用于中温固体氧化物燃料电池的Nd0.5Sr0.5Fe0.8Cu0.2O3·dexSm0.2Ce0.8O1.9无钴复合阴极
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:7.2
- 作者:
Chunming Zhang;Nguyen Q. Minh;Weimin Zhang;Zi-feng Ma - 通讯作者:
Zi-feng Ma
Prediction Error Estimation Under Bregman Divergence for Non‐Parametric Regression and Classification
- DOI:
10.1111/j.1467-9469.2008.00593.x - 发表时间:
2008-09 - 期刊:
- 影响因子:1
- 作者:
Chunming Zhang - 通讯作者:
Chunming Zhang
Estimation of false discovery proportion in multiple testing: From normal to chi-squared test statistics
多重测试中错误发现比例的估计:从正态检验统计到卡方检验统计
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Lilun Du;Chunming Zhang - 通讯作者:
Chunming Zhang
A 20Gbps CTLE with Active Inductor
具有有源电感器的 20Gbps CTLE
- DOI:
10.1109/icicm56102.2022.10011348 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Chunming Zhang;Yibo Wang;Mengxuan Xie;Desheng Zhang - 通讯作者:
Desheng Zhang
Assessing the equivalence of nonparametric regression tests based on spline and local polynomial smoothers
- DOI:
10.1016/j.jspi.2003.07.013 - 发表时间:
2004-11 - 期刊:
- 影响因子:0.9
- 作者:
Chunming Zhang - 通讯作者:
Chunming Zhang
Chunming Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chunming Zhang', 18)}}的其他基金
Structural Learning and Statistical Inference for Large-Scale Data
大规模数据的结构学习和统计推断
- 批准号:
2013486 - 财政年份:2020
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: Novel and Unified Statistical Learning Procedures for Massive Dynamic Multiple-Input, Multiple-Output Networks
协作研究:大规模动态多输入多输出网络的新颖且统一的统计学习程序
- 批准号:
1521761 - 财政年份:2015
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Structural-Information Enhanced Inference for Large-Scale and High-Dimensional Data
大规模高维数据的结构信息增强推理
- 批准号:
1308872 - 财政年份:2013
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Dimension Reduction for Non-Regular Statistical Models with Applications
非正则统计模型降维及其应用
- 批准号:
1106586 - 财政年份:2011
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Regularization and Optimization for High Dimensional Regression and Classification with Biological Applications
生物应用中高维回归和分类的正则化和优化
- 批准号:
0705209 - 财政年份:2007
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: FRG: New development on nonparametric modeling and inferences with biological applications
合作研究:FRG:非参数建模和生物学应用推论的新进展
- 批准号:
0353941 - 财政年份:2004
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
相似海外基金
Regularization and approximation: statistical inference, model selection, and large data
正则化和近似:统计推断、模型选择和大数据
- 批准号:
RGPIN-2021-02618 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods for large-scale inference
大规模推理的统计方法
- 批准号:
RGPIN-2020-04739 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别:
Discovery Grants Program - Individual
Robust and Efficient Statistical Inference in Large Scale Semi-Supervised Settings
大规模半监督环境中稳健且高效的统计推断
- 批准号:
2113768 - 财政年份:2021
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
CAREER: Fast and Accurate Statistical Learning and Inference from Large-Scale Data: Theory, Methods, and Algorithms
职业:从大规模数据中快速准确地进行统计学习和推理:理论、方法和算法
- 批准号:
2046874 - 财政年份:2021
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Statistical methods for large-scale inference
大规模推理的统计方法
- 批准号:
RGPIN-2020-04739 - 财政年份:2021
- 资助金额:
$ 12.5万 - 项目类别:
Discovery Grants Program - Individual
Regularization and approximation: statistical inference, model selection, and large data
正则化和近似:统计推断、模型选择和大数据
- 批准号:
RGPIN-2021-02618 - 财政年份:2021
- 资助金额:
$ 12.5万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods for large-scale inference
大规模推理的统计方法
- 批准号:
RGPIN-2020-04739 - 财政年份:2020
- 资助金额:
$ 12.5万 - 项目类别:
Discovery Grants Program - Individual
Structural Learning and Statistical Inference for Large-Scale Data
大规模数据的结构学习和统计推断
- 批准号:
2013486 - 财政年份:2020
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
A statistical mechanics approach to reliability assessment in large scale statistical inference
大规模统计推断中可靠性评估的统计力学方法
- 批准号:
19J10711 - 财政年份:2019
- 资助金额:
$ 12.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Statistical Methods for Incorporating Machine Learning Tools in Inference and Large-Scale Surveillance using Electronic Medical Records Data
使用电子病历数据将机器学习工具纳入推理和大规模监控的统计方法
- 批准号:
9816009 - 财政年份:2019
- 资助金额:
$ 12.5万 - 项目类别: