Collaborative Research: CompSustNet: Expanding the Horizons of Computational Sustainability
合作研究:CompSustNet:拓展计算可持续性的视野
基本信息
- 批准号:1522054
- 负责人:
- 金额:$ 806万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-12-15 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Poverty, saving species, repowering the world with renewable energy, lifting people up to live better lives - there are no easy answers to guiding our planet on the path toward sustainability. Complex problems require sophisticated solutions. They involve intricacy beyond human capabilities, the kind of big-data processing and analysis that only advanced large-scale computing can provide. This NSF Expedition in Computing launches CompSustNet (http://www.compsust.net), a vast research network powered by the nation's recognized university computer science programs, charged with applying the emerging field of computational sustainability to solving the world's seemingly unsolvable resource problems. Put simply, the project will enlist some of the top talents in computing, social science, conservation, physics, materials science, and engineering to unlock sustainable solutions that safeguard our planet's future.Computational Sustainability is, at its core, the belief that with sufficiently advanced computational techniques, we can devise sustainable solutions that meet the environmental, societal, and economic needs of today while providing for future generations. In much the same way IBM's supercomputer Watson could defeat any challenger in Jeopardy!, computational sustainability posits that a computer-engineered solution can be applied to world's difficult and challenging problems - from helping farmers and herders in Africa survive severe droughts to developing a smart power grid fueled entirely by renewable energy. CompSustNet is a large national and international multi-institutional research network led by Cornell University and including 11 other US academic institutions: Bowdoin, Caltech, CMU, Georgia Tech, Howard University, Oregon State, Princeton, Stanford, UMass, University of South California, and Vanderbilt University, as well as collaborations with several international universities. But CompSustNet is not just an academic enterprise, as it also includes key governmental and non-governmental organizations that specialize in conservation, poverty mitigation, and renewable energy, such as The Nature Conservancy, The World Wildlife Fund, The International Livestock Research Institute, The Trans-African Hydro-Meteorological Observatory, and the National Institute of Standards and Technology.CompSustNet's core mission is to significantly expand the horizons of computational sustainability and foster the advancement of state-of-the-art computer science to achieve the scale to tackle global problems. Research will focus on cross-cutting computational topics such as optimization, dynamical models, simulation, big data, machine learning, and citizen science, applied to sustainability challenges. For example, computational sustainability is being put to work to resolve the problem of providing wetlands for shorebirds that migrate from the Arctic through California during a time of drought. As California gets drier, the shorebirds have nowhere to stop, rest, and refuel by eating wetland invertebrates. Scientists are developing new dynamic precision conservation techniques that use complex, big-data models to tackle the problem with NASA satellite imagery, meteorological forecasts, and citizen science in the form of thousands of bird location sightings from the Cornell Lab of Ornithology's eBird checklisting app for birdwatchers. Through partnership with The Nature Conservancy, the program forecasts when and where wetland habitat would be needed for shorebirds, and the Conservancy pays Central Valley rice farmers to flood their fields at opportune times - providing benefits for birds and farmers at a time when extreme drought is making life tough for both. In similar ways, computational sustainability projects will also be hard at work innovating automated monitoring networks to protect endangered elephant population from poachers, promoting the discovery of novel ways to harvest energy from sun light, and designing algorithms to manage the generation and storage of renewable energy in the power grid. Advancements in computational sustainability will lead to novel, low-cost, high-efficiency strategies for saving endangered species, helping indigenous peoples improve their way of life, and scaling renewables up to meet 21st century energy demand. CompSustNet is like the seed, the venture capital, to help the field of computational sustainability achieve what's possible.
贫困、拯救物种、用可再生能源为世界提供动力、让人们过上更好的生活--要引导我们的地球走上可持续发展的道路,没有简单的答案。复杂的问题需要成熟的解决方案。它们涉及超出人类能力的复杂性,只有先进的大规模计算才能提供的大数据处理和分析。这次NSF计算机远征启动了CompSustNet(http:www.compsust.net),这是一个由美国公认的大学计算机科学项目提供支持的庞大研究网络,负责将新兴的计算可持续性领域应用于解决世界上看似无法解决的资源问题。简而言之,该项目将招募计算机、社会科学、保护、物理学、材料科学和工程学领域的一些顶尖人才,以解锁可持续的解决方案,保护我们星球的未来。计算可持续性的核心是相信,通过足够先进的计算技术,我们可以设计出满足环境、社会、环境和人类需求的可持续解决方案。满足今天的经济需求,同时为子孙后代提供服务。就像IBM的超级计算机沃森可以击败任何挑战者在危险!,计算可持续性假设计算机工程解决方案可以应用于世界上困难和具有挑战性的问题-从帮助非洲的农民和牧民度过严重干旱到开发完全由可再生能源驱动的智能电网。CompSustNet是一个大型的国家和国际多机构研究网络,由康奈尔大学领导,包括11个其他美国学术机构:鲍登,加州理工学院,CMU,格鲁吉亚理工学院,霍华德大学,俄勒冈州,普林斯顿,斯坦福大学,马萨诸塞大学,南加州大学和范德比尔特大学,以及与几所国际大学的合作。但CompSustNet不仅仅是一个学术企业,因为它还包括专门从事保护,减轻贫困和可再生能源的主要政府和非政府组织,如大自然保护协会,世界野生动物基金会,国际牲畜研究所,跨非洲水文气象观测站,CompSustNet的核心使命是显著扩大计算可持续性的范围,促进国家的发展。艺术计算机科学,以达到规模,以解决全球性问题。研究将侧重于交叉计算主题,如优化,动态模型,模拟,大数据,机器学习和公民科学,应用于可持续发展的挑战。 例如,计算可持续性正在被用于解决为在干旱期间从北极通过加州迁徙的滨鸟提供湿地的问题。随着加州变得越来越干燥,滨鸟无处可停,休息,并通过吃湿地无脊椎动物来补充能量。科学家们正在开发新的动态精确保护技术,这些技术使用复杂的大数据模型来解决NASA卫星图像,气象预报和公民科学的问题,这些问题来自康奈尔鸟类学实验室的eBird检查清单应用程序。通过与大自然保护协会(The Nature Conservancy)的合作,该项目预测滨鸟需要湿地栖息地的时间和地点,大自然保护协会向中央谷的稻农提供资金,让他们在适当的时候淹没他们的田地--在极端干旱使鸟类和农民的生活都变得坚韧的时候,为鸟类和农民提供好处。以类似的方式,计算可持续性项目也将努力创新自动化监测网络,以保护濒危大象种群免受偷猎者的侵害,促进发现从阳光中获取能量的新方法,并设计算法来管理电网中可再生能源的生成和存储。计算可持续性的进步将导致新的,低成本,高效率的战略,以拯救濒危物种,帮助土著人民改善他们的生活方式,并扩大可再生能源,以满足21世纪世纪能源需求。CompSustNet就像种子,风险投资,帮助计算可持续性领域实现可能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carla Gomes其他文献
Integrating land cover structure and functioning to predict biodiversity patterns: a hierarchical modelling framework designed for ecosystem management
整合土地覆盖结构和功能来预测生物多样性模式:为生态系统管理设计的分层建模框架
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:5.2
- 作者:
R. Bastos;A. Monteiro;Diogo Carvalho;Carla Gomes;P. Travassos;J. Honrado;M. Santos;J. A. Cabral - 通讯作者:
J. A. Cabral
Trusted land: land deals, climate vulnerability and adaptation in Northern Mozambique
值得信赖的土地:莫桑比克北部的土地交易、气候脆弱性和适应
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:4.3
- 作者:
Carla Gomes - 通讯作者:
Carla Gomes
Using Community Detection Algorithms for Sustainability Applications
使用社区检测算法进行可持续发展应用
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
S. Soundarajan;Carla Gomes - 通讯作者:
Carla Gomes
Adapting governance for coastal change in Portugal
葡萄牙沿海变化的治理调整
- DOI:
10.1016/j.landusepol.2012.07.012 - 发表时间:
2013 - 期刊:
- 影响因子:7.1
- 作者:
L. Schmidt;P. Prista;Tiago Saraiva;T. O'Riordan;Carla Gomes - 通讯作者:
Carla Gomes
A generative power-law search tree model
- DOI:
10.1016/j.cor.2008.08.017 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:
- 作者:
Alda Carvalho;Nuno Crato;Carla Gomes - 通讯作者:
Carla Gomes
Carla Gomes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carla Gomes', 18)}}的其他基金
INSPIRE Track 1: UDiscoverIt: Integrating Expert Knowledge, Constraint-Based Reasoning and Learning to Accelerate Materials Discovery
INSPIRE 轨道 1:UDiscoverIt:整合专家知识、基于约束的推理和学习以加速材料发现
- 批准号:
1344201 - 财政年份:2013
- 资助金额:
$ 806万 - 项目类别:
Continuing Grant
EAGER: Exploratory Research in Automated Computational Analysis of Inorganic Materials Libraries
EAGER:无机材料库自动计算分析的探索性研究
- 批准号:
1258330 - 财政年份:2013
- 资助金额:
$ 806万 - 项目类别:
Standard Grant
PC3: Collaborative Research: Wireless Sensor Networks for Protecting Wildlife and Humans
PC3:合作研究:保护野生动物和人类的无线传感器网络
- 批准号:
1143651 - 财政年份:2011
- 资助金额:
$ 806万 - 项目类别:
Standard Grant
II-EN: Computing research infrastructure for constraint optimization, machine learning, and dynamical models for computational sustainability
II-EN:用于约束优化、机器学习和计算可持续性动态模型的计算研究基础设施
- 批准号:
1059284 - 财政年份:2011
- 资助金额:
$ 806万 - 项目类别:
Standard Grant
Student and Junior Researcher Participation in CompSust09: 1st International Conference on Computational Sustainability
学生和初级研究员参加 CompSust09:第一届计算可持续性国际会议
- 批准号:
0939505 - 财政年份:2009
- 资助金额:
$ 806万 - 项目类别:
Standard Grant
Collaborative Research: Computational Sustainability: Computational Methods for a Sustainable Environment, Economy, and Society
合作研究:计算可持续性:可持续环境、经济和社会的计算方法
- 批准号:
0832782 - 财政年份:2008
- 资助金额:
$ 806万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 806万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 806万 - 项目类别:
Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
- 批准号:
AH/X011747/1 - 财政年份:2024
- 资助金额:
$ 806万 - 项目类别:
Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
- 批准号:
502555 - 财政年份:2024
- 资助金额:
$ 806万 - 项目类别:
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
- 批准号:
DE240100161 - 财政年份:2024
- 资助金额:
$ 806万 - 项目类别:
Discovery Early Career Researcher Award
Understanding the experiences of UK-based peer/community-based researchers navigating co-production within academically-led health research.
了解英国同行/社区研究人员在学术主导的健康研究中进行联合生产的经验。
- 批准号:
2902365 - 财政年份:2024
- 资助金额:
$ 806万 - 项目类别:
Studentship
XMaS: The National Material Science Beamline Research Facility at the ESRF
XMaS:ESRF 的国家材料科学光束线研究设施
- 批准号:
EP/Y031962/1 - 财政年份:2024
- 资助金额:
$ 806万 - 项目类别:
Research Grant
FCEO-UKRI Senior Research Fellowship - conflict
FCEO-UKRI 高级研究奖学金 - 冲突
- 批准号:
EP/Y033124/1 - 财政年份:2024
- 资助金额:
$ 806万 - 项目类别:
Research Grant
UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
- 批准号:
EP/Y033183/1 - 财政年份:2024
- 资助金额:
$ 806万 - 项目类别:
Research Grant
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
- 批准号:
NE/Y005457/1 - 财政年份:2024
- 资助金额:
$ 806万 - 项目类别:
Training Grant