INSPIRE Track 1: UDiscoverIt: Integrating Expert Knowledge, Constraint-Based Reasoning and Learning to Accelerate Materials Discovery
INSPIRE 轨道 1:UDiscoverIt:整合专家知识、基于约束的推理和学习以加速材料发现
基本信息
- 批准号:1344201
- 负责人:
- 金额:$ 70万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-15 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This INSPIRE award is partially funded by the Information Integration and Informatics Program in the Division of Information and Intelligent Systems in the Directorate for Computer and Information Science and Engineering and the Solid State and Materials Chemistry Program in the Division of Materials Research and the Office of Multidisciplinary Activities in the Directorate for Mathematical and Physical Sciences.The past two decades have seen a rapid development in experimental high-throughput experimentation (HTE) methodologies that would be extremely valuable for (i) the discovery of new applied materials with high complexity and (ii) the generation of deep understanding of structure/function, structure/activity and structure/performance relationships. Especially high photon flux X-ray techniques have enormous transformative potential in materials discovery. The research team leverages the data being collected by the Cornell High Energy Synchrotron Source (CHESS) and at Caltechs Joint Center for Artificial Photosynthesis (JCAP). While high-throughput inorganic library synthesis is relatively well-established, high-throughput structure determination, which is at the heart of the proposed research, is in its infancy. X-ray diffraction is well-suited for rapidly collecting information on the atomic arrangements in an inorganic sample, but the data do not immediately reveal a crystal structure. The development of data analysis, data mining and interpretation methodologies has not kept pace with the development of experimental capability. Consequently, data acquired in a week can take many months of traditional analysis by researchers. Automation and machine-intelligent processing of the data are absolutely necessary to maximise the impact of complex multidimensional datasets. This project addresses this state of affairs head-on; It investigates computational techniques that allow dealing with the multiparameter space associated with HTE structure determination of materials libraries, through constraint guided search adn optimization, statistical machine learning, and inference techniques in combination with direct human input into the process. Anticipated advances include new probabilistic methods and computational discovery tools that integrate soft and hard constraints that capture the complex background knowledge from the underlying physics and chemistry of materials with insights gained from high throughput data analytics and machine learning. If the project succeeds in achieving the anticipated enormous efficiency gains in complex structure determination, it could have have a transformative impact on materials discovery and complex solid state chemistry and physics. The ability to reduce complex materials dicovery and optimization from timeframes of months or years to hours or days could lead to a paradigm shift in the development of products benefiting society, with technological advances as well as commercial impact on energy, sustainability, health and quality of life. The planned free dissemination of data sets and computational tools to the larger scientific community is likely to enhance the broader impacts of the project. The project facilitates increased interdisciplinary interactions between computer scientists and material scientists at Cornell University and offer enhanced opportunities for training of a new generation of researchers at the interface between the two disciplines.
该INSPIRE奖部分由计算机和信息科学与工程局信息和智能系统司的信息集成和信息学计划以及数学和物理科学局材料研究司和多学科活动办公室的固态和材料化学计划资助。过去二十年来,实验高通量实验(HTE)方法,这将是非常有价值的(i)发现新的应用材料与高复杂性和(ii)生成的结构/功能,结构/活性和结构/性能关系的深刻理解。特别是高光子通量X射线技术在材料发现方面具有巨大的变革潜力。该研究小组利用康奈尔高能同步加速器源(CHESS)和加州理工学院人工光合作用联合中心(JCAP)收集的数据。虽然高通量无机库合成是相对完善的,但作为所提出的研究的核心的高通量结构测定仍处于起步阶段。X射线衍射非常适合于快速收集无机样品中原子排列的信息,但这些数据并不能立即揭示晶体结构。数据分析、数据挖掘和解释方法的发展没有跟上实验能力的发展。因此,研究人员在一周内获得的数据可能需要数月的传统分析。数据的自动化和机器智能处理对于最大化复杂多维数据集的影响是绝对必要的。该项目解决了这种情况的正面;它研究了允许处理与材料库的HTE结构确定相关的多参数空间的计算技术,通过约束引导搜索和优化,统计机器学习和推理技术,并结合直接人工输入到过程中。预期的进展包括新的概率方法和计算发现工具,这些工具集成了软约束和硬约束,从材料的底层物理和化学中捕获复杂的背景知识,并从高通量数据分析和机器学习中获得见解。 如果该项目成功地实现了复杂结构测定的预期巨大效率增益,它可能对材料发现和复杂固态化学和物理产生变革性影响。将复杂材料的发现和优化从数月或数年的时间范围减少到数小时或数天的能力可能会导致产品开发的范式转变,造福社会,技术进步以及对能源,可持续性,健康和生活质量的商业影响。按计划向更广大的科学界免费传播数据集和计算工具,这可能会加强该项目的广泛影响。该项目促进了康奈尔大学计算机科学家和材料科学家之间的跨学科互动,并为两个学科之间的新一代研究人员的培训提供了更多的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carla Gomes其他文献
Integrating land cover structure and functioning to predict biodiversity patterns: a hierarchical modelling framework designed for ecosystem management
整合土地覆盖结构和功能来预测生物多样性模式:为生态系统管理设计的分层建模框架
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:5.2
- 作者:
R. Bastos;A. Monteiro;Diogo Carvalho;Carla Gomes;P. Travassos;J. Honrado;M. Santos;J. A. Cabral - 通讯作者:
J. A. Cabral
Trusted land: land deals, climate vulnerability and adaptation in Northern Mozambique
值得信赖的土地:莫桑比克北部的土地交易、气候脆弱性和适应
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:4.3
- 作者:
Carla Gomes - 通讯作者:
Carla Gomes
Using Community Detection Algorithms for Sustainability Applications
使用社区检测算法进行可持续发展应用
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
S. Soundarajan;Carla Gomes - 通讯作者:
Carla Gomes
Adapting governance for coastal change in Portugal
葡萄牙沿海变化的治理调整
- DOI:
10.1016/j.landusepol.2012.07.012 - 发表时间:
2013 - 期刊:
- 影响因子:7.1
- 作者:
L. Schmidt;P. Prista;Tiago Saraiva;T. O'Riordan;Carla Gomes - 通讯作者:
Carla Gomes
A generative power-law search tree model
- DOI:
10.1016/j.cor.2008.08.017 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:
- 作者:
Alda Carvalho;Nuno Crato;Carla Gomes - 通讯作者:
Carla Gomes
Carla Gomes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carla Gomes', 18)}}的其他基金
Collaborative Research: CompSustNet: Expanding the Horizons of Computational Sustainability
合作研究:CompSustNet:拓展计算可持续性的视野
- 批准号:
1522054 - 财政年份:2015
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
EAGER: Exploratory Research in Automated Computational Analysis of Inorganic Materials Libraries
EAGER:无机材料库自动计算分析的探索性研究
- 批准号:
1258330 - 财政年份:2013
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
PC3: Collaborative Research: Wireless Sensor Networks for Protecting Wildlife and Humans
PC3:合作研究:保护野生动物和人类的无线传感器网络
- 批准号:
1143651 - 财政年份:2011
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
II-EN: Computing research infrastructure for constraint optimization, machine learning, and dynamical models for computational sustainability
II-EN:用于约束优化、机器学习和计算可持续性动态模型的计算研究基础设施
- 批准号:
1059284 - 财政年份:2011
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Student and Junior Researcher Participation in CompSust09: 1st International Conference on Computational Sustainability
学生和初级研究员参加 CompSust09:第一届计算可持续性国际会议
- 批准号:
0939505 - 财政年份:2009
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: Computational Sustainability: Computational Methods for a Sustainable Environment, Economy, and Society
合作研究:计算可持续性:可持续环境、经济和社会的计算方法
- 批准号:
0832782 - 财政年份:2008
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
- 批准号:
2324714 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
- 批准号:
2327025 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
- 批准号:
2327206 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
- 批准号:
2327232 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
- 批准号:
2327267 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
- 批准号:
2327349 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
- 批准号:
2327317 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
RII Track-4:@NASA: Wind-induced noise in the prospective seismic data measured in the Venusian surface environment
RII Track-4:@NASA:金星表面环境中测量的预期地震数据中的风致噪声
- 批准号:
2327422 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant














{{item.name}}会员




