Collaborative Research: Riemann-Hilbert Problems and Riemann Surfaces: Computations and Applications

协作研究:黎曼-希尔伯特问题和黎曼曲面:计算和应用

基本信息

  • 批准号:
    1522675
  • 负责人:
  • 金额:
    $ 27.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-15 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

Riemann-Hilbert problems (RHPs) arise in a plethora of applications, varying from equations describing tsunamis to the understanding of nuclear energy. In its most basic form, a RHP determines a function that jumps in a prescribed way along a curve in the plane and has specified behavior far away from where the jump occurs. Such problems were first posed by Riemann and later by Hilbert at the end of the 19th century. Their study has been at the forefront of pure and applied mathematics. Until recently, little effort had been devoted to the actual computation of solutions of such problems. This research project extends recent work in carrying out numerical investigations. It is anticipated that major advances will be made in the solution of RHPs, allowing for the increased understanding of tsunamis, fast optical communication, and other physical phenomena.The goal of the project is to develop new computational tools for the solution of RHPs and their extensions. Traditionally, RHPs arise in the context of singular integral equations and the Wiener-Hopf technique. More recently, RHPs have been connected to random matrix theory, nonlinear special functions, and nonlinear wave equations. RHPs may be posed on Riemann surfaces, and nonlinear jump conditions may be specified. Recent developments involving the investigators and collaborators have led to the development of accurate and efficient numerical algorithms for the solution of RHPs, for problems posed on Riemann surfaces, and for the computation of special functions such as the Schottky-Klein prime function. However, many open problems remain, particularly concerning new applications. This project aims to develop new computational methods to solve these problems, with an emphasis on the development of fast and efficient algorithms that can deal with complicated geometries, and to deploy them in applications. The investigators, postdoctoral scholar, and collaborators bring together a unique combination of expertise in the different areas needed to successfully carry out the collaborative project.
黎曼-希尔伯特问题(Riemann-Hilbert problem,RHP)在许多应用中出现,从描述海啸的方程到对核能的理解。在其最基本的形式中,RHP确定一个函数,该函数沿平面中的曲线沿着以规定的方式跳跃,并且在远离跳跃发生的地方具有指定的行为。这些问题首先由黎曼提出,后来由希尔伯特在世纪末提出。他们的研究一直处于纯数学和应用数学的前沿。直到最近,很少有人致力于实际计算这些问题的解决方案。该研究项目扩展了最近进行数值研究的工作。预计RHP的解决方案将取得重大进展,从而增加对海啸、快速光通信和其他物理现象的了解,该项目的目标是开发新的计算工具,用于解决RHP及其扩展。传统上,RHP出现在奇异积分方程和Wiener-Hopf技术的背景下。最近,RHP已连接到随机矩阵理论,非线性特殊功能,和非线性波动方程。RHP可以在黎曼曲面上提出,并且可以指定非线性跳跃条件。最近的发展涉及的研究人员和合作者已经导致了发展的准确和有效的数值算法的解决方案的RHP,黎曼曲面上提出的问题,并计算特殊的功能,如肖特基-克莱因素函数。然而,仍然存在许多悬而未决的问题,特别是在新的应用方面。该项目旨在开发新的计算方法来解决这些问题,重点是开发能够处理复杂几何形状的快速有效算法,并将其部署在应用程序中。研究人员,博士后学者和合作者汇集了成功开展合作项目所需的不同领域的独特专业知识组合。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Numerical solution of scattering problems using a Riemann–Hilbert formulation
使用黎曼希尔伯特公式对散射问题进行数值求解
  • DOI:
    10.1098/rspa.2019.0105
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Llewellyn Smith, Stefan G.;Luca, Elena
  • 通讯作者:
    Luca, Elena
Stokes flow through a two-dimensional channel with a linear expansion
斯托克斯流过线性展开的二维通道
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stefan Llewellyn Smith其他文献

swirlをもつ磁気渦輪のcontour dynamicsとその一般化
含涡流的磁涡环轮廓动力学及其推广
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    服部裕司;Stefan Llewellyn Smith
  • 通讯作者:
    Stefan Llewellyn Smith
A transform pair for bounded convex planar domains
有界凸平面域的变换对
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jesse Hulse;Loredana Lanzani;Stefan Llewellyn Smith;Elena Luca
  • 通讯作者:
    Elena Luca

Stefan Llewellyn Smith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stefan Llewellyn Smith', 18)}}的其他基金

Complex Analysis: Techniques, Applications and Computations
复杂分析:技术、应用和计算
  • 批准号:
    1933403
  • 财政年份:
    2019
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Radiatively Driven Convection in a deep freshwater lake
合作研究:淡水深湖中的辐射驱动对流
  • 批准号:
    1829919
  • 财政年份:
    2018
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
The dynamics of buoyant vortices
浮力涡动力学
  • 批准号:
    1706934
  • 财政年份:
    2017
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Beyond Horizontal Convection
超越水平对流
  • 批准号:
    1259580
  • 财政年份:
    2013
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond Point Vortices: Moving Singularities and Wave Fields in Fluid Mechanics
合作研究:超越点涡:流体力学中的移动奇点和波场
  • 批准号:
    0970113
  • 财政年份:
    2010
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Horizontal convection: the role of turbulence
水平对流:湍流的作用
  • 批准号:
    0926481
  • 财政年份:
    2009
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
CAREER: Flutter, Tumble and Fall: Extending Maxwell's Problem of the Falling Plate, and Using Sports as an Educational Aid in Science and Engineering
职业:扑腾、翻滚和跌倒:扩展麦克斯韦落板问题,并利用体育作为科学和工程的教育辅助手段
  • 批准号:
    0133978
  • 财政年份:
    2002
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Research on holomorphic mappings of Riemann surfaces --- Geometry of spaces of continuations of Riemann surfaces and applications
黎曼曲面全纯映射研究——黎曼曲面延拓空间的几何及应用
  • 批准号:
    22K03356
  • 财政年份:
    2022
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on holomorphic mappings of Riemann surfaces --- generalizations and applications of handle conditions
黎曼曲面全纯映射研究——柄条件的推广与应用
  • 批准号:
    18K03334
  • 财政年份:
    2018
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on variations of invariants and reproducing kernels on Riemann surfaces under pseudoconvexity
赝凸下黎曼曲面不变量变化及再生核研究
  • 批准号:
    15K04914
  • 财政年份:
    2015
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Riemann-Hilbert Problems and Riemann Surfaces: Computations and Applications
协作研究:黎曼-希尔伯特问题和黎曼曲面:计算和应用
  • 批准号:
    1522677
  • 财政年份:
    2015
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
Research of normal surface singularities related to degeneration families of compact Riemann surfaces.
与紧致黎曼曲面退化族相关的法向曲面奇点研究。
  • 批准号:
    25400064
  • 财政年份:
    2013
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on variations of invariants on Riemann surfaces under pseudoconvexity
赝凸下黎曼曲面不变量变化的研究
  • 批准号:
    23740098
  • 财政年份:
    2011
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Research on holomorphic mappings of Riemann surfaces----roles of handles played in the existence problem of holomorphic mappings
黎曼曲面全纯映射研究——柄在全纯映射存在问题中的作用
  • 批准号:
    22540196
  • 财政年份:
    2010
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on ideal boundaries of open Riemann surfaces
开黎曼曲面理想边界的研究
  • 批准号:
    17540178
  • 财政年份:
    2005
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The research of 2-dimensional complex singularities associated to degenerations of closed Riemann surfaces
闭黎曼曲面退化相关的二维复奇点研究
  • 批准号:
    16540052
  • 财政年份:
    2004
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
FRG: Collaborative Research: Moduli Spaces of Riemann Surfaces and String Topology
FRG:协作研究:黎曼曲面和弦拓扑的模空间
  • 批准号:
    0244100
  • 财政年份:
    2003
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了