The dynamics of buoyant vortices
浮力涡动力学
基本信息
- 批准号:1706934
- 负责人:
- 金额:$ 31.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to carry out a systematic study of vortical flows incorporating buoyancy effects, including the effects of gravity, density differences and surface tension. Explicit calculations of the motion of vortices in the presence of density differences and surface tension will develop understanding of fundamental fluid processes. Potential applications include a number of technological and geophysical situations, such as volcano vortex rings, cavitation, and flows around helicopter rotors and wind turbins. The project brings together researchers with complementary skills and experience in vortex dynamics and variable-density flows, and begins a new collaborative effort with scientists in Japan, Spain and Great Britain. In addition to outreach, during a series of workshops, the PI and teachers will develop a curriculum unit focusing on the calculus relevant to physical principles, illustrated by examples from the proposed work and fluid mechanics more generally. Four sub-projects will be investigated. First, the stability of vortex filaments will be examined in the presence of density variations. The case of rings and helices will be examined, since for these geometries solutions are known for the basic state. Second, an asymptotically consistent model for the evolution of a thin-core vortex filament with density variations will be developed and implemented. A formulation based on a force balance allows buoyancy and surface tension forces to be incorporated in a natural manner. Third, contour dynamics methods for axisymmetric vortex rings with density differences will be developed. This leads to the evolution of a vortex sheet on the boundary generated by baroclinic torques. Fourth, a new approach to contour dynamics applicable to helical vortices will be introduced and implemented, giving new exact solutions to the problem. The sub-projects are independent but related: each gives insight into features of the full problem. The outcome should include advances in the understanding of vortical fluid flow, including new solutions, and in new reduced models of such flows.
该项目的目标是对包含浮力效应的涡流进行系统研究,包括重力、密度差和表面张力的效应。 在存在密度差和表面张力的情况下对涡旋运动的显式计算将加深对基本流体过程的理解。 潜在的应用包括一些技术和地球物理的情况下,如火山涡环,空化,以及周围的直升机转子和风力涡轮机的流动。该项目汇集了在涡旋动力学和变密度流方面具有互补技能和经验的研究人员,并开始与日本、西班牙和英国的科学家进行新的合作。除了外展,在一系列的研讨会期间,PI和教师将开发一个课程单元,重点是与物理原理相关的微积分,并通过拟议工作和流体力学的例子进行说明。将调查四个次级项目。首先,在存在密度变化的情况下,将检验涡丝的稳定性。 环和螺旋的情况下,将检查,因为这些几何形状的解决方案是已知的基本状态。 其次,将发展和实施一个薄芯涡丝密度变化的演化的渐近一致模型。 基于力平衡的配方允许浮力和表面张力以自然的方式结合。 第三,将发展具有密度差的轴对称涡环的轮廓动力学方法。 这导致了斜压力矩在边界上产生的涡面的演化。 第四,一个新的方法轮廓动力学适用于螺旋涡将介绍和实施,给新的精确解决方案的问题。 子项目是独立的,但相关的:每一个都让我们深入了解整个问题的特征。 成果应包括在理解旋涡流体流动方面的进展,包括新的解决办法,以及这种流动的新的简化模型。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generalized Contour Dynamics: A Review
广义轮廓动力学:回顾
- DOI:10.1134/s1560354718050027
- 发表时间:2018
- 期刊:
- 影响因子:1.4
- 作者:Llewellyn Smith, Stefan G.;Chang, Ching;Chu, Tianyi;Blyth, Mark;Hattori, Yuji;Salman, Hayder
- 通讯作者:Salman, Hayder
Steady translating hollow vortex pair in weakly compressible flow
- DOI:10.1016/j.physd.2023.133943
- 发表时间:2023-11-16
- 期刊:
- 影响因子:4
- 作者:Krishnamurthy,Vikas S.;Smith,Stefan G. Llewellyn
- 通讯作者:Smith,Stefan G. Llewellyn
Helical Contour Dynamics
螺旋轮廓动力学
- DOI:10.1134/s1560354721060022
- 发表时间:2021
- 期刊:
- 影响因子:1.4
- 作者:Chu, Tianyi;Llewellyn Smith, Stefan G.
- 通讯作者:Llewellyn Smith, Stefan G.
Long-wavelength equations of motion for thin double vorticity layers
薄双涡层的长波长运动方程
- DOI:10.1017/jfm.2022.342
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Baker, Gregory;Chang, Ching;Llewellyn Smith, Stefan G.;Pullin, D.I.
- 通讯作者:Pullin, D.I.
Density and surface tension effects on vortex stability. Part 2. Moore–Saffman–Tsai–Widnall instability
密度和表面张力对涡流稳定性的影响。
- DOI:10.1017/jfm.2020.1157
- 发表时间:2021
- 期刊:
- 影响因子:3.7
- 作者:Chang, Ching;Llewellyn Smith, Stefan G.
- 通讯作者:Llewellyn Smith, Stefan G.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stefan Llewellyn Smith其他文献
swirlをもつ磁気渦輪のcontour dynamicsとその一般化
含涡流的磁涡环轮廓动力学及其推广
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
服部裕司;Stefan Llewellyn Smith - 通讯作者:
Stefan Llewellyn Smith
A transform pair for bounded convex planar domains
有界凸平面域的变换对
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jesse Hulse;Loredana Lanzani;Stefan Llewellyn Smith;Elena Luca - 通讯作者:
Elena Luca
Stefan Llewellyn Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stefan Llewellyn Smith', 18)}}的其他基金
Complex Analysis: Techniques, Applications and Computations
复杂分析:技术、应用和计算
- 批准号:
1933403 - 财政年份:2019
- 资助金额:
$ 31.57万 - 项目类别:
Standard Grant
Collaborative Research: Radiatively Driven Convection in a deep freshwater lake
合作研究:淡水深湖中的辐射驱动对流
- 批准号:
1829919 - 财政年份:2018
- 资助金额:
$ 31.57万 - 项目类别:
Standard Grant
Collaborative Research: Riemann-Hilbert Problems and Riemann Surfaces: Computations and Applications
协作研究:黎曼-希尔伯特问题和黎曼曲面:计算和应用
- 批准号:
1522675 - 财政年份:2015
- 资助金额:
$ 31.57万 - 项目类别:
Continuing Grant
Collaborative Research: Beyond Point Vortices: Moving Singularities and Wave Fields in Fluid Mechanics
合作研究:超越点涡:流体力学中的移动奇点和波场
- 批准号:
0970113 - 财政年份:2010
- 资助金额:
$ 31.57万 - 项目类别:
Standard Grant
Horizontal convection: the role of turbulence
水平对流:湍流的作用
- 批准号:
0926481 - 财政年份:2009
- 资助金额:
$ 31.57万 - 项目类别:
Standard Grant
CAREER: Flutter, Tumble and Fall: Extending Maxwell's Problem of the Falling Plate, and Using Sports as an Educational Aid in Science and Engineering
职业:扑腾、翻滚和跌倒:扩展麦克斯韦落板问题,并利用体育作为科学和工程的教育辅助手段
- 批准号:
0133978 - 财政年份:2002
- 资助金额:
$ 31.57万 - 项目类别:
Continuing Grant
相似海外基金
Dispersion characteristics of buoyant gases in urban areas
城市地区浮力气体扩散特征
- 批准号:
2895219 - 财政年份:2023
- 资助金额:
$ 31.57万 - 项目类别:
Studentship
SBIR Phase I: Feasibility investigation for a self-buoyant solar panel
SBIR 第一阶段:自浮式太阳能电池板的可行性研究
- 批准号:
2136652 - 财政年份:2022
- 资助金额:
$ 31.57万 - 项目类别:
Standard Grant
Collaborative Research: Lagrangian transport and patchiness of buoyant material in estuarine systems
合作研究:河口系统中浮力物质的拉格朗日输送和斑块性
- 批准号:
2148370 - 财政年份:2022
- 资助金额:
$ 31.57万 - 项目类别:
Standard Grant
Collaborative Research: Correlating Large-Scale Visual Structures to Entrainment Mechanisms in Buoyant and Momentum-Driven Plumes
合作研究:将大规模视觉结构与浮力和动量驱动羽流中的夹带机制相关联
- 批准号:
2231780 - 财政年份:2022
- 资助金额:
$ 31.57万 - 项目类别:
Standard Grant
Localized buoyant convection in porous media: plumes and dispersion
多孔介质中的局域浮力对流:羽流和弥散
- 批准号:
RGPIN-2019-04581 - 财政年份:2022
- 资助金额:
$ 31.57万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Lagrangian transport and patchiness of buoyant material in estuarine systems
合作研究:河口系统中浮力物质的拉格朗日输送和斑块性
- 批准号:
2148375 - 财政年份:2022
- 资助金额:
$ 31.57万 - 项目类别:
Standard Grant
Mathematical modelling of buoyant flows in deformable porous media, applied to carbon sequestration, saltwater intrusion and subglacial hydrology
可变形多孔介质中浮力流的数学模型,应用于碳封存、盐水入侵和冰下水文
- 批准号:
2747254 - 财政年份:2022
- 资助金额:
$ 31.57万 - 项目类别:
Studentship
Collaborative Research: Correlating Large-Scale Visual Structures to Entrainment Mechanisms in Buoyant and Momentum-Driven Plumes
合作研究:将大规模视觉结构与浮力和动量驱动羽流中的夹带机制相关联
- 批准号:
2231781 - 财政年份:2022
- 资助金额:
$ 31.57万 - 项目类别:
Standard Grant
Localized buoyant convection in porous media: plumes and dispersion
多孔介质中的局域浮力对流:羽流和弥散
- 批准号:
RGPIN-2019-04581 - 财政年份:2021
- 资助金额:
$ 31.57万 - 项目类别:
Discovery Grants Program - Individual
EAGER: The Dynamics of Large Buoyant Plumes
EAGER:大型浮力羽流的动力学
- 批准号:
2127071 - 财政年份:2021
- 资助金额:
$ 31.57万 - 项目类别:
Standard Grant