Conference: Manifolds and Groups: Towers of Covers; September 7th - September 12th, 2015, Ventotene, Italy
会议:流形和组:盖塔;
基本信息
- 批准号:1522981
- 负责人:
- 金额:$ 4.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project supports participation of US based mathematicians in the international workshop "Manifolds and Groups: Towers of Covers" which will take place from September 7th until September 12th, 2015, in Ventotene, Italy. A major goal of the workshop is to train and support the next generation of mathematicians in the field of geometric analysis. The conference will help to educate graduate students and recent PhDs on the latest developments in the field. The conference will introduce junior mathematicians to various topics in geometric group theory and bring them up to the forefront of research. A part of the conference will be devoted to three mini-courses, taught by experts known also for their ability to give enlightening lectures. In parallel to the minicourses, there will be research talks. The speakers will be prompted by the organizers to aim their lectures at a broad audience of mathematicians. The majority of funding will support junior participants coming from USA. The organizing committee will encourage and support broad and diverse participation. In particular, women mathematicians and members of other under-represented groups are especially encouraged to apply for support. The workshop consists of the following three minicourses on different aspects of "Towers of Covers": "Invariant Random Subgroups in rank one and higher rank Lie groups" (Tsachik Gelander, Hebrew University and Weizmann Institute), "Coverings and expanders" (Emmanuel Kowalski, ETH Zurich), and "L^2-invariants and growth of homology in towers of finite coverings" (Roman Sauer, Karlsruhe Institute of Technology). The workshop will also feature research talks and informal discussions. Participants will include leading U.S. and European researchers from different areas relevant to the centerpiece of the workshop (3-manifold topology, probability and analytic group theory) as well as junior researchers, both graduate students and postdocs.More infromation can be found at the websitehttp://www.ventotene2015.net/
该项目支持美国数学家参加将于2015年9月7日至9月12日在意大利文托泰内举行的国际研讨会“流形和群:覆盖塔”。讲习班的一个主要目标是培训和支持几何分析领域的下一代数学家。会议将有助于教育研究生和最近的博士在该领域的最新发展。会议将向初级数学家介绍几何群论的各种主题,并将他们带到研究的最前沿。会议的一部分将专门用于三个小型课程,由专家讲授,他们也有能力给予启发性的讲座。在小型课程的同时,将有研究会谈。组织者将促使演讲者将演讲目标对准广大的数学家听众。大部分资金将用于支持来自美国的初级参与者。组委会将鼓励和支持广泛和多样化的参与。特别鼓励女数学家和其他代表性不足群体的成员申请资助。工作坊由以下三个小型课程组成,分别介绍“封面之塔”的不同方面: “秩1和更高秩李群中的不变随机子群”(Tsachik Gelander,希伯来大学和魏茨曼研究所),“覆盖和扩张”(Emmanuel Kowalski,ETH苏黎世),和“L^2-不变量和有限覆盖塔中的同调增长”(Roman Sauer,卡尔斯鲁厄理工学院)。研讨会还将包括研究讲座和非正式讨论。与会者将包括来自与研讨会核心内容(三维拓扑、概率和分析群论)相关的不同领域的美国和欧洲领先研究人员,以及研究生和博士后的初级研究人员。更多信息可在以下网站找到:http:www.ventotene2015.net/
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kate Juschenko其他文献
Algebraic reformulation of connes embedding problem and the free group algebra
- DOI:
10.1007/s11856-011-0010-z - 发表时间:
2011-02-25 - 期刊:
- 影响因子:0.800
- 作者:
Kate Juschenko;Stanislav Popovych - 通讯作者:
Stanislav Popovych
Ideals of a C *-algebra generated by an operator algebra
- DOI:
10.1007/s00209-009-0594-8 - 发表时间:
2009-08-18 - 期刊:
- 影响因子:1.000
- 作者:
Kate Juschenko - 通讯作者:
Kate Juschenko
Kate Juschenko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kate Juschenko', 18)}}的其他基金
Collaborative Research: Conference: Brazos Analysis Seminar
合作研究:会议:Brazos 分析研讨会
- 批准号:
2400115 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Analytic Properties of Group Actions of Finitely Generated Groups
有限生成群的群作用的解析性质
- 批准号:
1901467 - 财政年份:2019
- 资助金额:
$ 4.2万 - 项目类别:
Continuing Grant
CAREER: Amenable and recurrent actions of finitely generated groups
职业:有限生成群的顺从且经常性的行动
- 批准号:
1932552 - 财政年份:2018
- 资助金额:
$ 4.2万 - 项目类别:
Continuing Grant
CAREER: Amenable and recurrent actions of finitely generated groups
职业:有限生成群的顺从且经常性的行动
- 批准号:
1352173 - 财政年份:2014
- 资助金额:
$ 4.2万 - 项目类别:
Continuing Grant
Approximation properties of groups and operator algebras
群和算子代数的近似性质
- 批准号:
1439377 - 财政年份:2014
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Approximation properties of groups and operator algebras
群和算子代数的近似性质
- 批准号:
1300174 - 财政年份:2013
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
相似国自然基金
氢/氨燃料尾气环境下排气歧管材料腐蚀疲劳机制与寿命预测研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于无网格/等几何分析方法的发动机进气歧管流声耦合拓扑优化研究
- 批准号:2020JJ4582
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Diffusions and jump processes on groups and manifolds
群和流形上的扩散和跳跃过程
- 批准号:
2343868 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Continuing Grant
Smooth 4-manifolds, hyperbolic 3-manifolds and diffeomorphism groups
光滑 4 流形、双曲 3 流形和微分同胚群
- 批准号:
2304841 - 财政年份:2023
- 资助金额:
$ 4.2万 - 项目类别:
Continuing Grant
Topology of Kaehler Manifolds, Surface Bundles, and Outer Automorphism Groups
凯勒流形、表面丛和外自同构群的拓扑
- 批准号:
2401403 - 财政年份:2023
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Conference: Geometry and Analysis of Groups and Manifolds
会议:群和流形的几何与分析
- 批准号:
2247784 - 财政年份:2023
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
- 批准号:
2247008 - 财政年份:2023
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Low dimensional topology, ordered groups and actions on 1-manifolds
低维拓扑、有序群和 1-流形上的动作
- 批准号:
RGPIN-2020-05343 - 财政年份:2022
- 资助金额:
$ 4.2万 - 项目类别:
Discovery Grants Program - Individual
Schottky Groups and the construction of higher genus Frobenius manifolds
肖特基群和更高属的弗罗贝尼乌斯流形的构造
- 批准号:
2750785 - 财政年份:2022
- 资助金额:
$ 4.2万 - 项目类别:
Studentship
Homological Growth of Groups and Aspherical Manifolds
群和非球面流形的同调生长
- 批准号:
2203325 - 财政年份:2022
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Low dimensional topology, ordered groups and actions on 1-manifolds
低维拓扑、有序群和 1-流形上的动作
- 批准号:
RGPIN-2020-05343 - 财政年份:2021
- 资助金额:
$ 4.2万 - 项目类别:
Discovery Grants Program - Individual
Topology and Geometry from 3-Manifolds to Free Groups
从三流形到自由群的拓扑和几何
- 批准号:
2102018 - 财政年份:2021
- 资助金额:
$ 4.2万 - 项目类别:
Continuing Grant