Analytic Properties of Group Actions of Finitely Generated Groups

有限生成群的群作用的解析性质

基本信息

  • 批准号:
    1901467
  • 负责人:
  • 金额:
    $ 32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The core of the project is based on the recent techniques developed by PI and aimed to deepen the understanding of several analytic properties of groups and their actions. One of the central notions of the research is amenability, which relates to an averaging operation that is invariant under translation by group elements. It naturally appears in many fields of mathematics: operator algebras, functional analysis, ergodic theory, probability theory, harmonic analysis. Amenability has many applications and considerable effort has been given throughout the years to showing that various groups are amenable. The PI will study a newly developed property of group actions: Liouville property. The property can be used to prove non-amenability due to the fact that if a group admits a non-Liouville action, then the group is not amenable. The PI have already developed tools for verifying Liouville property for graphs of the actions. These tools brought a connection of Liouville property of actions for strongly transitive groups and additive combinatorics. The project describes several questions on Liouville actions with streamlined approaches, as well as more ambitious problems and conjectures. In particular, the PI outlines an approach to non-amenability of Thompson group F, which is a widely open problem in the group theory. The PI provides an approach to amenability of interval exchange transformation groups. The actions of these are Liouville, moreover, they are completely Liouville. Thus, amenability of these groups can not be approached using Liouville property. For this reason, the PI will study a property of random walk of action: growth of inverted orbits. Using this property there is a potential to determine amenability of the interval exchange transformation group. On the other hand the study of this property property leads to a more general theory that is planned to be developed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的核心是基于PI开发的最新技术,旨在加深对群体及其行动的几个分析性质的理解。研究的中心概念之一是顺从性,它涉及到一个平均操作,是不变的平移下的组元素。它自然地出现在许多数学领域:算子代数,泛函分析,遍历理论,概率论,调和分析。顺从性有许多应用,多年来,人们付出了相当大的努力来表明各种群体都是顺从的。 PI将研究群作用的一个新的性质:Liouville性质。 这个性质可以用来证明不可顺从性,因为如果一个群允许一个非刘维尔作用,那么这个群是不可顺从的。PI已经开发了用于验证动作图的Liouville性质的工具。这些工具将强传递群作用的刘维尔性质与加法组合数学联系起来。该项目以简化的方法描述了关于刘维行动的几个问题,以及更雄心勃勃的问题和建议。特别是,PI概述了汤普森群F的非顺从性的方法,这是群论中一个广泛开放的问题。PI为区间交换变换群的顺从性提供了一种方法。 他们的行为是刘维尔,而且,他们完全是刘维尔。因此,这些群体的顺从性不能用刘维尔性质来处理。因此,PI将研究作用随机游走的一个性质:反转轨道的增长。利用这个性质,有可能确定区间交换变换群的顺从性。另一方面,对这一财产的研究导致了一个更普遍的理论,这是计划发展。这个奖项反映了NSF的法定使命,并已被认为是值得支持的,通过评估使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kate Juschenko其他文献

Algebraic reformulation of connes embedding problem and the free group algebra
  • DOI:
    10.1007/s11856-011-0010-z
  • 发表时间:
    2011-02-25
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Kate Juschenko;Stanislav Popovych
  • 通讯作者:
    Stanislav Popovych
Ideals of a C *-algebra generated by an operator algebra
  • DOI:
    10.1007/s00209-009-0594-8
  • 发表时间:
    2009-08-18
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Kate Juschenko
  • 通讯作者:
    Kate Juschenko

Kate Juschenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kate Juschenko', 18)}}的其他基金

Collaborative Research: Conference: Brazos Analysis Seminar
合作研究:会议:Brazos 分析研讨会
  • 批准号:
    2400115
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
CAREER: Amenable and recurrent actions of finitely generated groups
职业:有限生成群的顺从且经常性的行动
  • 批准号:
    1932552
  • 财政年份:
    2018
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
Conference: Manifolds and Groups: Towers of Covers; September 7th - September 12th, 2015, Ventotene, Italy
会议:流形和组:盖塔;
  • 批准号:
    1522981
  • 财政年份:
    2015
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
CAREER: Amenable and recurrent actions of finitely generated groups
职业:有限生成群的顺从且经常性的行动
  • 批准号:
    1352173
  • 财政年份:
    2014
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
Approximation properties of groups and operator algebras
群和算子代数的近似性质
  • 批准号:
    1439377
  • 财政年份:
    2014
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Approximation properties of groups and operator algebras
群和算子代数的近似性质
  • 批准号:
    1300174
  • 财政年份:
    2013
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Algebraic, Analytic, and Dynamical Properties of Group Actions on 1-Manifolds and Related Spaces
职业:1-流形和相关空间上群作用的代数、解析和动力学性质
  • 批准号:
    2240136
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
Analytic group properties that are von Neumann equivalence invariant
冯·诺依曼等价不变的解析群属性
  • 批准号:
    22KF0182
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Synthesis of Main Group Compounds and Materials with Novel Structures and Optoelectronic Properties
具有新颖结构和光电性能的主族化合物和材料的合成
  • 批准号:
    2246810
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Development of Stable Carbene Motifs that Bring out the Characteristic Properties of Group 16 Elements and Their Application to Synthetic Chemistry
展现16族元素特性的稳定卡宾基序的开发及其在合成化学中的应用
  • 批准号:
    22K20541
  • 财政年份:
    2022
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Towards a better understanding of the effect of the pentafluorosulfanyl group on the lipophilicity and acid/base properties of alcohols and amines
更好地了解五氟硫基对醇和胺的亲脂性和酸/碱性质的影响
  • 批准号:
    571856-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 32万
  • 项目类别:
    Alliance Grants
Magnetic, electronic and optical properties of multifunctional main group radicals
多功能主族自由基的磁、电子和光学性质
  • 批准号:
    RGPIN-2020-04627
  • 财政年份:
    2022
  • 资助金额:
    $ 32万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling the multi-scale spatial variations in the geomechanical properties within the discontinuities of the Sherwood Sandstone Group and their infl
对舍伍德砂岩群的不连续性内地质力学特性的多尺度空间变化及其影响进行建模
  • 批准号:
    2754950
  • 财政年份:
    2022
  • 资助金额:
    $ 32万
  • 项目类别:
    Studentship
Oxidizing Functional Groups: Looking for New Types of Extreme Properties in Main-group Compounds
氧化官能团:寻找主族化合物中新型的极端性质
  • 批准号:
    RGPIN-2021-03406
  • 财政年份:
    2022
  • 资助金额:
    $ 32万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric properties of the mapping class group
映射类组的几何属性
  • 批准号:
    546076-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 32万
  • 项目类别:
    Postdoctoral Fellowships
Oxidizing Functional Groups: Looking for New Types of Extreme Properties in Main-group Compounds
氧化官能团:寻找主族化合物中新型的极端性质
  • 批准号:
    DGECR-2021-00393
  • 财政年份:
    2021
  • 资助金额:
    $ 32万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了