Homological Growth of Groups and Aspherical Manifolds
群和非球面流形的同调生长
基本信息
- 批准号:2203325
- 负责人:
- 金额:$ 17.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Topology is often described as doing geometry on a rubber sheet; spaces are considered equivalent if one can be transformed into the other without cutting or gluing. Homology is a fundamental algebraic invariant which can distinguish spaces up to this equivalence. For instance, the homology of the surface of a donut is different than that of the surface of a donut hole, and this implies that turning one of these surfaces into the other requires some cutting or gluing. Homological invariants are generally difficult to compute, especially in higher dimensions. Instead of computing them exactly, this project addresses questions about the growth rate of these invariants for naturally occurring sequences of spaces. The proposed research concentrates on several long-standing conjectures on the topology of aspherical manifolds. This project will also promote graduate and undergraduate education through mentoring and outreach. More specifically, the primary goal of the research program is to study the growth of homological invariants in a residual tower of finite regular covers of an aspherical complex. The underlying motivation is a conjecture that linear growth of rational Betti numbers in such a tower should obstruct these complexes being homotopy equivalent to manifolds of a certain dimension. The project will explore this conjecture and variants of it with rational homology replaced with mod p or integral homology. For instance, the PI plans to construct Gromov hyperbolic groups where the growth rate of Betti numbers depends on the field of coefficients, and locally CAT(-1), odd-dimensional manifolds with linear growth of mod p Betti numbers. Such manifolds will not virtually fiber over a circle, and the PI will further explore the connection between vanishing homological growth and the Bieri-Neumann-Strebel invariants (which encode algebraic analogues of such fibering). The PI will also study manifold thickenings of aspherical complexes where this homological growth vanishes and other obstructions from coarse geometry arise. This project is jointly funded by Topology and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
拓扑学通常被描述为在橡胶板上做几何;如果一个空间可以转换为另一个空间而不需要切割或粘合,那么空间被认为是等效的。同调是一个基本的代数不变量,它可以区分直到这种等价的空间。 例如,一个圆环表面的同调性不同于一个圆环孔表面的同调性,这意味着将其中一个表面变成另一个表面需要一些切割或胶合。 同调不变量通常很难计算,特别是在更高的维度上。 这个项目不是精确地计算它们,而是解决关于自然发生的空间序列的这些不变量的增长率的问题。 建议的研究集中在几个长期存在的apturtures的拓扑结构的非球面流形。 该项目还将通过指导和外联活动促进研究生和本科生教育。更具体地说,该研究计划的主要目标是研究同调不变量在非球面复体的有限规则覆盖的剩余塔中的增长。潜在的动机是一个猜想,理性贝蒂数的线性增长,在这样的塔应该阻碍这些复杂的同伦等价于流形的一定规模。 该项目将探索这个猜想和它的变体,其中有理同调替换为模p或积分同调。例如,PI计划构造Gromov双曲群,其中Betti数的增长率取决于系数域,以及局部CAT(-1),具有mod p Betti数线性增长的奇维流形。这样的流形实际上不会在一个圆上纤维化,PI将进一步探索消失的同调增长和Bieri-Neumann-Strebel不变量(编码这种纤维化的代数类似物)之间的联系。PI还将研究非球面复合体的流形增厚,其中这种同调增长消失,而粗糙几何的其他障碍出现。该项目由拓扑学和刺激竞争研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Schreve其他文献
$$L^2$$ -betti numbers of branched covers of hyperbolic manifolds
- DOI:
10.1007/s00208-025-03164-z - 发表时间:
2025-04-24 - 期刊:
- 影响因子:1.400
- 作者:
Grigori Avramidi;Boris Okun;Kevin Schreve - 通讯作者:
Kevin Schreve
The Atiyah Conjecture and $$L^2$$ -cohomology computations
- DOI:
10.1007/s10711-017-0293-2 - 发表时间:
2017-10-24 - 期刊:
- 影响因子:0.500
- 作者:
Wiktor Mogilski;Kevin Schreve - 通讯作者:
Kevin Schreve
The emK/em(emπ/em,1)-conjecture implies the center conjecture for Artin groups
emK/em(emπ/em,1)猜想蕴含阿廷群的中心猜想
- DOI:
10.1016/j.jalgebra.2022.10.024 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:0.800
- 作者:
Kasia Jankiewicz;Kevin Schreve - 通讯作者:
Kevin Schreve
Kevin Schreve的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Schreve', 18)}}的其他基金
相似国自然基金
基于FP-Growth关联分析算法的重症患者抗菌药物精准决策模型的构建和实证研究
- 批准号:2024Y9049
- 批准年份:2024
- 资助金额:100.0 万元
- 项目类别:省市级项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Coset growth in finitely generated groups
有限生成群中的陪集增长
- 批准号:
551653-2020 - 财政年份:2020
- 资助金额:
$ 17.86万 - 项目类别:
University Undergraduate Student Research Awards
Geometry of the braid groups and mapping class groups and their growth
辫子组的几何形状和映射类组及其增长
- 批准号:
18K03283 - 财政年份:2018
- 资助金额:
$ 17.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Direct Electrodeposition of Crystalline Groups IV and III-V Semiconductors by Electrochemical Liquid-Liquid-Solid Growth
通过电化学液-液-固生长直接电沉积 IV 族和 III-V 族晶体半导体
- 批准号:
1505635 - 财政年份:2015
- 资助金额:
$ 17.86万 - 项目类别:
Standard Grant
Representation growth of linear groups over local rings
线性群在局部环上的表示增长
- 批准号:
EP/K024779/1 - 财政年份:2014
- 资助金额:
$ 17.86万 - 项目类别:
Research Grant
Topology of discrete groups and growth series
离散群和增长级数的拓扑
- 批准号:
26400086 - 财政年份:2014
- 资助金额:
$ 17.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Growth in Groups, June 24-28, 2014
会议:团体成长,2014 年 6 月 24-28 日
- 批准号:
1417725 - 财政年份:2014
- 资助金额:
$ 17.86万 - 项目类别:
Standard Grant
Representation growth of arithmetic groups (C12*)
算术组的表示增长 (C12*)
- 批准号:
241966120 - 财政年份:2013
- 资助金额:
$ 17.86万 - 项目类别:
Collaborative Research Centres
Deformation spaces of discrete groups and growth functions
离散群的变形空间和增长函数
- 批准号:
23540085 - 财政年份:2011
- 资助金额:
$ 17.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)