Collaborative Research: Modeling and Analyzing Extreme Risks in Insurance and Finance

合作研究:保险和金融极端风险的建模和分析

基本信息

项目摘要

Recent rare events with disastrous economic and social consequences, so-called Black-Swan events, have made today?s world far different from just decades ago. Examples of these events range from earthquakes and nuclear crises to the collapse of financial market from sub-prime mortgages. All of these intensify the need for risk management among the insurance and financial industry, and in particular, the invention of new tools to model, analyze, predict, and manage extreme risks. The investigators will undertake the fundamental challenges posed by the study of rare events: they, by nature, are short of data, their likelihood is difficult to compute, and that they are difficult to reflect via accurate models. As such, the investigators will take an integrated approach that combines statistical methods, probabilistic analysis, optimization, and efficient computer simulation to assess their risks. The research has potential for high societal impact, given the wide range of applications of the models and methods documented in the project for handling the important implications of extreme events. The investigators plan to train several Ph.D. students and will also involve them in K12 education as guest lecturers via Harlem Schools Partnership with Columbia University. The investigators will attempt to recruit high-quality personnel from under-represented groups. They will also disseminate the scientific output of this project via open access sites.The intellectual strength of the project rests on the fact that it includes algorithmic, computational, statistical, and theoretical components. The goal is to establish a robust and systematic approach for modeling and analyzing extreme risks in insurance and finance. The investigators systematically combine: a) the theory of extreme value statistics, b) asymptotic analysis in probability, c) stochastic optimization, and d) highly efficient Monte Carlo techniques. Specific objectives include: 1) establishing a robust asymptotic theory to account for tail events uniformly over a wide range of settings, 2) taking advantage of the asymptotic large deviations theory to build provably efficient Monte Carlo estimators for rare events, and 3) investigation of a robust optimization approach that accounts for model misspecification. The investigators' approach is both innovative and necessary because the nature of rare events exposes deficiencies in each of these areas: i) The theory of extreme value statistics assumes a large number of data points to provide accurate estimators but the nature of rare events precludes this assumption. ii) Asymptotic analysis techniques allow to obtain formulas that are easily evaluated and thus amenable to sensitivity analysis under a wide range of model parameters. So, asymptotics may help mitigate some of the statistical error issue, but unfortunately, they carry an unmeasurable error and often lose important information. iii) Efficient Monte Carlo has a controlled error by sampling, but it still assumes a model in place and could lead to incorrect conclusions in case the model is incorrect. iv) Optimization techniques might help mitigate the problem of model uncertainty by computing bounds for the probabilities of interest, optimizing over the selection of models that cover the truth with high confidence. However, these might be too loose to be practical or the optimization problem could be too complex, thus the need from 1) to 3). Overall, the investigators will establish a comprehensive approach that resolves the deficiencies exposed by each of the aforementioned segregated methods.
最近罕见的事件与灾难性的经济和社会后果,所谓的黑天鹅事件,使今天?现在的世界与几十年前大不相同。这些事件的例子从地震和核危机到次级抵押贷款导致的金融市场崩溃。所有这些都加强了保险和金融行业对风险管理的需求,特别是发明新的工具来建模,分析,预测和管理极端风险。研究人员将应对罕见事件研究带来的根本挑战:它们本质上缺乏数据,其可能性难以计算,并且难以通过准确的模型反映。因此,研究人员将采取综合方法,结合统计方法,概率分析,优化和有效的计算机模拟来评估其风险。鉴于该项目中记录的模型和方法在处理极端事件的重要影响方面的广泛应用,该研究有可能产生很大的社会影响。研究人员计划培养几名博士。学生,并将通过与哥伦比亚大学的哈莱姆学校合作伙伴关系,让他们作为客座讲师参与K12教育。调查员将设法从任职人数不足的群体中征聘高素质的人员。他们还将通过开放获取网站传播该项目的科学成果。该项目的智力力量取决于它包括算法、计算、统计和理论组件的事实。目标是建立一个强大的和系统的方法来建模和分析保险和金融中的极端风险。研究人员系统地结合联合收割机:a)极值统计理论,B)概率渐近分析,c)随机优化,和d)高效的蒙特卡洛技术。具体目标包括:1)建立一个稳健的渐近理论,以在广泛的设置范围内均匀地考虑尾事件,2)利用渐近大偏差理论建立可证明有效的Monte Carlo估计的罕见事件,和3)调查一个稳健的优化方法,考虑模型误设定。研究人员的方法是创新的和必要的,因为罕见事件的性质暴露了这些领域的缺陷:i)极值统计理论假设了大量的数据点,以提供准确的估计,但罕见事件的性质排除了这种假设。ii)渐近分析技术允许获得易于评估的公式,从而在广泛的模型参数下进行敏感性分析。因此,渐近可能有助于减轻一些统计误差问题,但不幸的是,它们带来了不可测量的误差,并且经常丢失重要信息。iii)有效的蒙特卡罗具有通过抽样控制的误差,但它仍然假设一个模型,并且在模型不正确的情况下可能导致错误的结论。iv)优化技术可以通过计算感兴趣的概率的界限来帮助减轻模型不确定性的问题,优化以高置信度覆盖真相的模型的选择。然而,这些可能太松散而不实用,或者优化问题可能太复杂,因此需要从1)到3)。 总的来说,调查人员将制定一个全面的办法,解决上述每一种单独的方法所暴露的缺陷。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uncertainty Quantification of Stochastic Simulation for Black-box Computer Experiments
黑盒计算机实验随机模拟的不确定性量化
Uncertainty quantification on simulation analysis driven by random forests
随机森林驱动的模拟分析的不确定性量化
Computing worst-case expectations given marginals via simulation
通过模拟计算给定边际的最坏情况期望
Improving prediction from stochastic simulation via model discrepancy learning
通过模型差异学习改进随机模拟的预测
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Henry Lam其他文献

jPOSTdb: COVID-19データベースの構築
jPOSTdb:构建 COVID-19 数据库
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tim Van Den Bossche;Eric W. Deutsch;Yasset Perez-Riverol;Jeremy Carver;Shin Kawano;Luis Mendoza;Ralf Gabriels;Pierre-Alain Binz;Benjamin Pullman;Zhi Sun;Jim Shofstahl;Wout Bittremieux;Tytus D. Mak;Joshua Klein;Yunping Zhu;Henry Lam;Juan An;吉沢明康;吉沢明康,守屋勇樹,小林大樹,張智翔,奥田修二郎,田畑剛,河野信,幡野敦,高見知代,松本雅記,山ノ内祥訓,荒木令江,岩崎未央,杉山直幸,福島敦史,田中聡,五斗進,石濱 泰
  • 通讯作者:
    吉沢明康,守屋勇樹,小林大樹,張智翔,奥田修二郎,田畑剛,河野信,幡野敦,高見知代,松本雅記,山ノ内祥訓,荒木令江,岩崎未央,杉山直幸,福島敦史,田中聡,五斗進,石濱 泰
Spectral archives: a vision for future proteomics data repositories
光谱档案:未来蛋白质组学数据库的愿景
  • DOI:
    10.1038/nmeth.1633
  • 发表时间:
    2011-06-29
  • 期刊:
  • 影响因子:
    32.100
  • 作者:
    Henry Lam
  • 通讯作者:
    Henry Lam
304 ELIMINATING THE MISUSE OF FECAL OCCULT BLOOD TESTING (FOBT) IN THE HOSPITAL SETTING
  • DOI:
    10.1016/s0016-5085(24)00643-7
  • 发表时间:
    2024-05-18
  • 期刊:
  • 影响因子:
  • 作者:
    Henry Lam;Amy Slenker;Eric Nellis
  • 通讯作者:
    Eric Nellis
Enteral and parenteral nutrition in cancer patients, a comparison of complication rates: an updated systematic review and (cumulative) meta-analysis
  • DOI:
    10.1007/s00520-019-05145-w
  • 发表时间:
    2019-12-07
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Ronald Chow;Eduardo Bruera;Jann Arends;Declan Walsh;Florian Strasser;Elisabeth Isenring;Egidio G. Del Fabbro;Alex Molassiotis;Monica Krishnan;Leonard Chiu;Nicholas Chiu;Stephanie Chan;Tian Yi Tang;Henry Lam;Michael Lock;Carlo DeAngelis
  • 通讯作者:
    Carlo DeAngelis
A Shrinkage Approach to Improve Direct Bootstrap Resampling Under Input Uncertainty
输入不确定性下改进直接引导重采样的收缩方法
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Eunhye Song;Henry Lam;Russell R. Barton
  • 通讯作者:
    Russell R. Barton

Henry Lam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Henry Lam', 18)}}的其他基金

S&AS:FND:COLLAB:Unsupervised Rare Event Learning - With Applications on Autonomous Vehicles
S
  • 批准号:
    1849280
  • 财政年份:
    2019
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Standard Grant
CAREER: Optimization-based Quantification of Statistical Uncertainty in Stochastic and Simulation Analysis
职业:随机和仿真分析中基于优化的统计不确定性量化
  • 批准号:
    1653339
  • 财政年份:
    2017
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Standard Grant
CAREER: Optimization-based Quantification of Statistical Uncertainty in Stochastic and Simulation Analysis
职业:随机和仿真分析中基于优化的统计不确定性量化
  • 批准号:
    1834710
  • 财政年份:
    2017
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Modeling and Analyzing Extreme Risks in Insurance and Finance
合作研究:保险和金融极端风险的建模和分析
  • 批准号:
    1436247
  • 财政年份:
    2014
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Standard Grant
A Sensitivity Approach to Assessing Model Uncertainty for Stochastic Systems
评估随机系统模型不确定性的灵敏度方法
  • 批准号:
    1400391
  • 财政年份:
    2014
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332469
  • 财政年份:
    2024
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
  • 批准号:
    2344259
  • 财政年份:
    2024
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
  • 批准号:
    2412294
  • 财政年份:
    2024
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Connecting the Past, Present, and Future Climate of the Lake Victoria Basin using High-Resolution Coupled Modeling
合作研究:使用高分辨率耦合建模连接维多利亚湖盆地的过去、现在和未来气候
  • 批准号:
    2323649
  • 财政年份:
    2024
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
  • 批准号:
    2344260
  • 财政年份:
    2024
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347344
  • 财政年份:
    2024
  • 资助金额:
    $ 8.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了