A Sensitivity Approach to Assessing Model Uncertainty for Stochastic Systems

评估随机系统模型不确定性的灵敏度方法

基本信息

  • 批准号:
    1400391
  • 负责人:
  • 金额:
    $ 22.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

The research objective of this award is to develop a robust and tractable methodology for assessing the impact of input model error, with minimal assumption placed on the parametric form of the input model. The discrepancy between model assumption and reality, or input model error, constitutes an important concern in many stochastic estimation problems, since it can affect the accuracy of outputs in various magnitudes. The key ingredient is a class of sensitivity estimators that are taken with respect to nonparametric statistical distances, derived via a new line of infinitesimal analysis on optimization problems over probability space. These sensitivity estimators are robust in that they automatically capture model discrepancy along the worst-case directions in the model space, and they are computationally tractable via efficient Monte Carlo methods. On the theoretical side, they will help provide fundamental understanding of model risk in stochastic computation, and on the practical side, they can be widely used to perform stress tests on the reliability of model assumptions.If successful, the results of this research will provide a robust and implementable method to assess the effect of model risk in computations that arise in many applications. Industries such as manufacturing, communication, call centers, and financial risk management all need to carry out calculations of different performance measures on a regular basis. The methodologies that come out from the research will provide sensitivity analysis tools to measure the impact and risk of inaccurate model assumptions in these calculations. The results of this research will also be used to develop new courses in undergraduate and graduate levels, and to establish mentorship of students from under-represented groups. The implementation will be widely disseminated through open software for both academic and industrial use.
该奖项的研究目标是开发一种稳健和易处理的方法来评估输入模型误差的影响,并对输入模型的参数形式进行最小限度的假设。在许多随机估计问题中,模型假设与实际之间的偏差或输入模型误差是一个重要的问题,因为它会在不同程度上影响输出的精度。其关键部分是关于非参数统计距离的一类灵敏度估计,它是通过对概率空间上的最优化问题的新的无穷小分析而得到的。这些灵敏度估计器是稳健的,因为它们自动捕捉模型空间中沿最坏情况方向的模型差异,并且它们通过高效的蒙特卡罗方法在计算上是容易处理的。在理论上,它们将有助于对随机计算中模型风险的基本了解,在实践方面,它们可以广泛用于对模型假设的可靠性进行压力测试。如果成功,本研究结果将为评估在许多应用中出现的计算中的模型风险的影响提供一种稳健且可实现的方法。制造业、通信、呼叫中心、金融风险管理等行业都需要定期进行不同绩效指标的测算。研究得出的方法将提供敏感性分析工具,以衡量这些计算中不准确的模型假设的影响和风险。这项研究的结果还将用于开发本科生和研究生水平的新课程,并建立对代表不足群体的学生的指导。这一实施将通过学术和工业用的开放软件广泛传播。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uncertainty Quantification of Stochastic Simulation for Black-box Computer Experiments
黑盒计算机实验随机模拟的不确定性量化
Uncertainty quantification on simulation analysis driven by random forests
随机森林驱动的模拟分析的不确定性量化
Computing worst-case expectations given marginals via simulation
通过模拟计算给定边际的最坏情况期望
Improving prediction from stochastic simulation via model discrepancy learning
通过模型差异学习改进随机模拟的预测
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Henry Lam其他文献

jPOSTdb: COVID-19データベースの構築
jPOSTdb:构建 COVID-19 数据库
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tim Van Den Bossche;Eric W. Deutsch;Yasset Perez-Riverol;Jeremy Carver;Shin Kawano;Luis Mendoza;Ralf Gabriels;Pierre-Alain Binz;Benjamin Pullman;Zhi Sun;Jim Shofstahl;Wout Bittremieux;Tytus D. Mak;Joshua Klein;Yunping Zhu;Henry Lam;Juan An;吉沢明康;吉沢明康,守屋勇樹,小林大樹,張智翔,奥田修二郎,田畑剛,河野信,幡野敦,高見知代,松本雅記,山ノ内祥訓,荒木令江,岩崎未央,杉山直幸,福島敦史,田中聡,五斗進,石濱 泰
  • 通讯作者:
    吉沢明康,守屋勇樹,小林大樹,張智翔,奥田修二郎,田畑剛,河野信,幡野敦,高見知代,松本雅記,山ノ内祥訓,荒木令江,岩崎未央,杉山直幸,福島敦史,田中聡,五斗進,石濱 泰
Spectral archives: a vision for future proteomics data repositories
光谱档案:未来蛋白质组学数据库的愿景
  • DOI:
    10.1038/nmeth.1633
  • 发表时间:
    2011-06-29
  • 期刊:
  • 影响因子:
    32.100
  • 作者:
    Henry Lam
  • 通讯作者:
    Henry Lam
304 ELIMINATING THE MISUSE OF FECAL OCCULT BLOOD TESTING (FOBT) IN THE HOSPITAL SETTING
  • DOI:
    10.1016/s0016-5085(24)00643-7
  • 发表时间:
    2024-05-18
  • 期刊:
  • 影响因子:
  • 作者:
    Henry Lam;Amy Slenker;Eric Nellis
  • 通讯作者:
    Eric Nellis
Enteral and parenteral nutrition in cancer patients, a comparison of complication rates: an updated systematic review and (cumulative) meta-analysis
  • DOI:
    10.1007/s00520-019-05145-w
  • 发表时间:
    2019-12-07
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Ronald Chow;Eduardo Bruera;Jann Arends;Declan Walsh;Florian Strasser;Elisabeth Isenring;Egidio G. Del Fabbro;Alex Molassiotis;Monica Krishnan;Leonard Chiu;Nicholas Chiu;Stephanie Chan;Tian Yi Tang;Henry Lam;Michael Lock;Carlo DeAngelis
  • 通讯作者:
    Carlo DeAngelis
A Shrinkage Approach to Improve Direct Bootstrap Resampling Under Input Uncertainty
输入不确定性下改进直接引导重采样的收缩方法
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Eunhye Song;Henry Lam;Russell R. Barton
  • 通讯作者:
    Russell R. Barton

Henry Lam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Henry Lam', 18)}}的其他基金

S&AS:FND:COLLAB:Unsupervised Rare Event Learning - With Applications on Autonomous Vehicles
S
  • 批准号:
    1849280
  • 财政年份:
    2019
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Standard Grant
CAREER: Optimization-based Quantification of Statistical Uncertainty in Stochastic and Simulation Analysis
职业:随机和仿真分析中基于优化的统计不确定性量化
  • 批准号:
    1653339
  • 财政年份:
    2017
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Standard Grant
CAREER: Optimization-based Quantification of Statistical Uncertainty in Stochastic and Simulation Analysis
职业:随机和仿真分析中基于优化的统计不确定性量化
  • 批准号:
    1834710
  • 财政年份:
    2017
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Modeling and Analyzing Extreme Risks in Insurance and Finance
合作研究:保险和金融极端风险的建模和分析
  • 批准号:
    1523453
  • 财政年份:
    2015
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Modeling and Analyzing Extreme Risks in Insurance and Finance
合作研究:保险和金融极端风险的建模和分析
  • 批准号:
    1436247
  • 财政年份:
    2014
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Standard Grant

相似国自然基金

EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
  • 批准号:
    81070152
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目

相似海外基金

Contaminants of emerging concern: An integrated approach for assessing impacts on the marine environment. Acronym: CONTRAST
新出现的污染物:评估对海洋环境影响的综合方法。
  • 批准号:
    10093180
  • 财政年份:
    2024
  • 资助金额:
    $ 22.49万
  • 项目类别:
    EU-Funded
Contaminants of emerging concern: An integrated approach for assessing impacts on the marine environment
新出现的污染物:评估对海洋环境影响的综合方法
  • 批准号:
    10108835
  • 财政年份:
    2024
  • 资助金额:
    $ 22.49万
  • 项目类别:
    EU-Funded
CAREER: CAS-Climate: Multiscale Data and Model Synthesis Informed Approach for Assessing Climate Resilience of Crop Production Systems
职业:CAS-气候:用于评估作物生产系统气候适应能力的多尺度数据和模型综合知情方法
  • 批准号:
    2339529
  • 财政年份:
    2024
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Continuing Grant
Non-contact, high-resolution optical approach to assessing retinal neurovascular coupling in the healthy and glaucomatous retina
非接触式高分辨率光学方法评估健康和青光眼视网膜中的视网膜神经血管耦合
  • 批准号:
    487714
  • 财政年份:
    2023
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Operating Grants
SCC-PG: A multidisciplinary approach to assessing city-wide near misses between vehicles and vulnerable road users in Reno-Sparks, Nevada
SCC-PG:采用多学科方法评估内华达州里诺-斯帕克斯市范围内车辆与弱势道路使用者之间的险情
  • 批准号:
    2243588
  • 财政年份:
    2023
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Standard Grant
Assessing the Effectiveness of Common Health Messaging Tactics on Self-Reported and Validated Vaccine Uptake: A Multi-Method Approach.
评估常见健康信息策略对自我报告和验证疫苗接种的有效性:多种方法。
  • 批准号:
    2318512
  • 财政年份:
    2023
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Standard Grant
A novel physical-digital approach for the assessing a large critical asset
一种用于评估大型关键资产的新颖的物理数字方法
  • 批准号:
    LP210200765
  • 财政年份:
    2023
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Linkage Projects
Assessing Architectural Aesthetic Character: An ‘Intelligent’ Approach
评估建筑美学特征:一种“智能”方法
  • 批准号:
    DP220101598
  • 财政年份:
    2022
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Discovery Projects
Assessing the Impacts of Social Categorization on Person Perception and Behavior: A Formal Modeling Approach
评估社会分类对人的感知和行为的影响:正式的建模方法
  • 批准号:
    2215236
  • 财政年份:
    2022
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Continuing Grant
Looking for love: What role do love and protection play in supporting a strength-based approach to assessing and responding to peer relationships in
寻找爱:爱和保护在支持基于力量的方法评估和回应同伴关系方面发挥什么作用
  • 批准号:
    2756592
  • 财政年份:
    2022
  • 资助金额:
    $ 22.49万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了