Boundedness and termination
有界性和终止性
基本信息
- 批准号:1524465
- 负责人:
- 金额:$ 54.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI will work on the birational classification of algebraic varieties. The minimal model program is an ambitious program to classify varieties up to birational equivalence. To finish the program and to establish existence of minimal models, it suffices to show termination of flips. The PI will use recent results concerning ACC for the log canonical threshold to attack termination. A related project is to study birational boundedness of Fano varieties, especially the conjecture of Borisov-Alexeev-Borisov. Birational geometry also offers a potential way to study vector bundles on projective space, to be used as a means to attack Hartshorne's conjectures. Finally, the PI also plans to study the connection between birational geometry, foliations and the abundance conjecture.Algebraic Geometry is one of the oldest and most challenging of areas of research in mathematics, which combines some very classical geometry, for example that of conic sections and the more modern techniques of algebra. There has been a lot exciting recent work in higher dimensional geometry. The PI will write a survey article for the Proceedings of the Royal Society on this work which is intended for a general scientific literate audience and the PI will also try to impart some of the exciting research in algebraic geometry to undergraduate and graduate students in his teaching.
PI将致力于代数簇的双有理分类。 最小模型计划是一个雄心勃勃的计划,分类品种的双有理等价。 为了完成程序并建立最小模型的存在性,只需显示翻转的终止即可。 PI将使用关于ACC的最新结果作为攻击终止的对数规范阈值。 一个相关的项目是研究Fano簇的双有理有界性,特别是Borisov-Alexeev-Borisov猜想。 双有理几何也提供了一个潜在的方式来研究向量丛的射影空间,被用来作为一种手段,攻击哈茨霍恩的结构。 最后,PI还计划研究双有理几何,叶理和丰度猜想之间的联系。代数几何是数学中最古老和最具挑战性的研究领域之一,它结合了一些非常经典的几何,例如圆锥曲线和更现代的代数技术。 最近在高维几何中有许多令人兴奋的工作。 PI将写一篇调查文章的程序的皇家学会对这项工作的目的是为一般科学素养的观众和PI也将试图传授一些令人兴奋的研究代数几何本科生和研究生在他的教学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James McKernan其他文献
Versality for canonical curves and complete intersections
- DOI:
10.1007/s002080050089 - 发表时间:
1997-08-01 - 期刊:
- 影响因子:1.400
- 作者:
James McKernan - 通讯作者:
James McKernan
James McKernan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James McKernan', 18)}}的其他基金
Termination and Vector Bundles on Projective Space
射影空间上的终止和向量丛
- 批准号:
1802460 - 财政年份:2018
- 资助金额:
$ 54.24万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Birational Geometry and Singularities in Zero and Positive Characteristic
FRG:协作研究:双有理几何和零特征和正特征中的奇点
- 批准号:
1523233 - 财政年份:2014
- 资助金额:
$ 54.24万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Birational Geometry and Singularities in Zero and Positive Characteristic
FRG:协作研究:双有理几何和零特征和正特征中的奇点
- 批准号:
1265263 - 财政年份:2013
- 资助金额:
$ 54.24万 - 项目类别:
Standard Grant
Collaborative Research: AGNES. Algebraic Geometry NorthEastern Series
合作研究:AGNES。
- 批准号:
1064420 - 财政年份:2011
- 资助金额:
$ 54.24万 - 项目类别:
Standard Grant
相似海外基金
Cryo-EM studies of a metazoan replisome captured ex vivo during elongation and termination
在延伸和终止过程中离体捕获的后生动物复制体的冷冻电镜研究
- 批准号:
BB/Y006232/1 - 财政年份:2024
- 资助金额:
$ 54.24万 - 项目类别:
Research Grant
Cryo-EM studies of a metazoan replisome captured ex vivo during elongation and termination
在延伸和终止过程中离体捕获的后生动物复制体的冷冻电镜研究
- 批准号:
BB/Y006151/1 - 财政年份:2024
- 资助金额:
$ 54.24万 - 项目类别:
Research Grant
Next Generation Infectious Disease Diagnostics: Microfluidic-Free Gigapixel PCR with Self-Assembled Partitioning
下一代传染病诊断:具有自组装分区的无微流控千兆像素 PCR
- 批准号:
10682295 - 财政年份:2023
- 资助金额:
$ 54.24万 - 项目类别:
Viral disruption of host transcriptome integrity
病毒破坏宿主转录组完整性
- 批准号:
10666992 - 财政年份:2023
- 资助金额:
$ 54.24万 - 项目类别:
Gastroenteritis virus infections in South African children: secretor status-linkedsusceptibility, prevalence and genetic diversity and humoral responses to norovirusinfection
南非儿童胃肠炎病毒感染:分泌者状态相关的易感性、患病率和遗传多样性以及对诺如病毒感染的体液反应
- 批准号:
10666007 - 财政年份:2023
- 资助金额:
$ 54.24万 - 项目类别:
Understanding the full spectrum of epigenetic vulnerability in cancer through the delineation of DNA methylation function in gene 3' end
通过描绘基因 3 端 DNA 甲基化功能,全面了解癌症的表观遗传脆弱性
- 批准号:
10765365 - 财政年份:2023
- 资助金额:
$ 54.24万 - 项目类别:
XRN2-DDX23 Cooperation in Avoiding R-loop-induced Genomic Instability
XRN2-DDX23 合作避免 R 环引起的基因组不稳定
- 批准号:
10654331 - 财政年份:2023
- 资助金额:
$ 54.24万 - 项目类别:
Geological conditions and long-term process leading to a massive landslide adjacent to an active-fault termination
地质条件和长期过程导致活动断层终止处附近发生大规模山体滑坡
- 批准号:
23H00728 - 财政年份:2023
- 资助金额:
$ 54.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Temporal coordination of transcription, translation, and protein degradation for meiotic termination
减数分裂终止的转录、翻译和蛋白质降解的时间协调
- 批准号:
2319006 - 财政年份:2023
- 资助金额:
$ 54.24万 - 项目类别:
Standard Grant