MRI: Development of a microfluidic flow cytometer for high-throughput noninvasive single-cell physio-chemical analysis
MRI:开发用于高通量无创单细胞理化分析的微流控流式细胞仪
基本信息
- 批准号:1532188
- 负责人:
- 金额:$ 71.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-15 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An award is made to Texas A&M University to develop a new and unique instrument which will be sought by users within and outside Texas A&M University and provide unsurpassed capabilities for the cutting-edge research and education in the areas of molecular and cellular biology, agriculture, engineering, medicine, and national defense. The new instrumentation is unique in many aspects, and it is anticipated that it will play a major role in developing new approaches for high-throughput cellular analysis, which are in high demand in biology and medicine. One of the thrust areas of emerging applications for this instrument is lipidomics. Microbes (both natural and engineered) that can convert biomass into oil offer the promise of achieving sustainable oil production and enhancing domestic energy independence. The newly developed instrument will substantially enhance the University infrastructure by uniting several Colleges, Institutes and Centers. This project will support broader impacts that promote the education and training of undergraduate and graduate students, as well as the general public. Specifically, this project will provide research opportunities and training for highly motivated undergraduates across several colleges and research disciplines; provide unique educational opportunities for students from the Texas Rio Grande Valley and the United States-Mexico border region, which includes the most economically disadvantaged areas of the country according to the U.S. Census Bureau. The results will be broadly disseminated through publications, public presentations, tutorial, and hands-on training seminars. Finally, findings from this research will be disseminated to the public through broadcasted segments on "Invisible Jungle", an undergraduate-produced radio program that is carried weekly on the local National Public Radio Affiliate, KAMU radio (College Station, Texas).Identification, classification and sorting live cells are activities of considerable research and commercial interest. Chemical composition and elasticity in cells play an important role our classification and our understanding of function. Conventional analysis of the chemical composition of cells involves the use of molecular labels or analytical approaches that destroy cell viability. Similarly, the conventional analysis of biomechanical or elastic properties of biological materials involves labor intensive and slow approaches. No commercial instrument exists to assess those properties at a high throughput rate (1000 cells per second) and non-invasively. The potential demand for such instrumentation is enormous, since almost every research/industrial/clinical lab relies on cell sorting. By providing additional capabilities, the newly developed instrument will also fill existing gaps in instrumentation. Innovations in scientific instrumentation often share several key features. First, these innovations perform measurements that were previously impossible. Second, they perform analyses at low cost with unprecedented throughput. Finally, instrumentation innovations address an important scientific need. Here, we will develop a transformative technology platform that contains all of the hallmarks of innovation in scientific instrumentation, and as such, has the potential to significantly advance life science, biomedical and engineering research. The overall instrument will be composed of two parts: (1) an optical sensing unit optimized for (a) chemical analysis of cells by means of coherent anti-Stokes Raman scattering spectroscopy, and (b) biophysical measurements of elasticity in cells through coherent Brillouin scattering; and (2) multifunctional microfluidic devices providing standardized platforms for cell delivery, sorting, and in situ validation of cell?s elastic properties. The newly developed instruments will also be validated using biological samples.
德克萨斯A M大学获得了一个奖项,以开发一种新的独特的仪器,该仪器将被德克萨斯A M大学内外的用户所寻求,并为分子和细胞生物学,农业,工程,医学和国防领域的尖端研究和教育提供无与伦比的能力。新仪器在许多方面都是独一无二的,预计它将在开发高通量细胞分析的新方法方面发挥重要作用,这在生物学和医学中具有很高的需求。该仪器新兴应用的主要领域之一是脂质组学。可以将生物质转化为石油的微生物(天然和工程)为实现可持续石油生产和提高国内能源独立性提供了希望。新开发的工具将通过联合几个学院,研究所和中心,大大加强大学的基础设施。该项目将支持更广泛的影响,促进本科生和研究生以及公众的教育和培训。具体来说,该项目将为多个学院和研究学科的积极进取的本科生提供研究机会和培训;为来自德克萨斯州格兰德河流域和美墨边境地区的学生提供独特的教育机会,其中包括根据美国人口普查局的数据,该国经济最贫困的地区。结果将通过出版物、公开介绍、辅导和实践培训研讨会广泛传播。最后,这项研究的结果将通过“看不见的丛林”的广播片段传播给公众,这是一个由大学生制作的广播节目,每周在当地的国家公共广播电台附属机构KAMU电台(学院站,德克萨斯州)进行。细胞的化学组成和弹性对我们的分类和对功能的理解起着重要的作用。细胞化学组成的常规分析涉及使用分子标记或破坏细胞活力的分析方法。类似地,生物材料的生物力学或弹性特性的常规分析涉及劳动密集型和缓慢的方法。目前还没有商业仪器能够以高通量速率(每秒1000个细胞)和非侵入性方式评估这些特性。对这种仪器的潜在需求是巨大的,因为几乎每个研究/工业/临床实验室都依赖于细胞分选。通过提供额外的能力,新开发的仪器还将填补现有的仪器空白。科学仪器的创新通常具有几个关键特征。首先,这些创新可以进行以前不可能的测量。其次,它们以低成本和前所未有的吞吐量进行分析。最后,仪器创新解决了一个重要的科学需求。在这里,我们将开发一个变革性的技术平台,该平台包含科学仪器创新的所有标志,因此有可能显著推进生命科学,生物医学和工程研究。整个仪器将由两部分组成:(1)光学传感单元优化(a)化学分析的细胞通过相干反斯托克斯拉曼散射光谱,和(B)生物物理测量的弹性细胞通过相干布里渊散射;和(2)多功能微流体装置提供标准化的平台,细胞输送,分选,并在原位验证细胞?的弹性性质。新开发的仪器也将使用生物样品进行验证。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vladislav Yakovlev其他文献
Neutron emission on the surface of Mars
- DOI:
10.1016/j.actaastro.2024.01.040 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:
- 作者:
Igor Mitrofanov;Maxim Litvak;Anton Sanin;Dmitry Golovin;Denis Lisov;Sergey Nikiforov;Vladislav Yakovlev - 通讯作者:
Vladislav Yakovlev
On laser ablation of common optical materials
常见光学材料的激光烧蚀
- DOI:
10.1117/12.3012615 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Joseph T. Harrington;Anthony Valenzuela;Vladislav Yakovlev - 通讯作者:
Vladislav Yakovlev
Neutron radiation dosimetry on Mars
火星上的中子辐射剂量测定
- DOI:
10.1016/j.actaastro.2025.04.048 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:3.400
- 作者:
Maxim Litvak;Igor Mitrofanov;Anton Sanin;Dmitry Golovin;Sergey Nikiforov;Denis Lisov;Vladislav Yakovlev - 通讯作者:
Vladislav Yakovlev
Photodynamic treatment of malignant melanoma with structured light: in silico Monte Carlo modeling
结构光光动力治疗恶性黑色素瘤:计算机蒙特卡罗建模
- DOI:
10.1364/boe.515962 - 发表时间:
2024 - 期刊:
- 影响因子:3.4
- 作者:
Alexander Doronin;Vladislav Yakovlev;V. Bagnato - 通讯作者:
V. Bagnato
Consensus statement on Brillouin light scattering microscopy of biological materials
关于生物材料布里渊光散射显微镜的共识声明
- DOI:
10.1038/s41566-025-01681-6 - 发表时间:
2025-07-03 - 期刊:
- 影响因子:32.900
- 作者:
Pierre Bouvet;Carlo Bevilacqua;Yogeshwari Ambekar;Giuseppe Antonacci;Joshua Au;Silvia Caponi;Sophie Chagnon-Lessard;Juergen Czarske;Thomas Dehoux;Daniele Fioretto;Yujian Fu;Jochen Guck;Thorsten Hamann;Dag Heinemann;Torsten Jähnke;Hubert Jean-Ruel;Irina Kabakova;Kristie Koski;Nektarios Koukourakis;David Krause;Salvatore La Cavera;Timm Landes;Jinhao Li;Hadi Mahmodi;Jeremie Margueritat;Maurizio Mattarelli;Michael Monaghan;Darryl R. Overby;Fernando Perez-Cota;Emanuele Pontecorvo;Robert Prevedel;Giancarlo Ruocco;John Sandercock;Giuliano Scarcelli;Filippo Scarponi;Claudia Testi;Peter Török;Lucie Vovard;Wolfgang J. Weninger;Vladislav Yakovlev;Seok-Hyun Yun;Jitao Zhang;Francesca Palombo;Alberto Bilenca;Kareem Elsayad - 通讯作者:
Kareem Elsayad
Vladislav Yakovlev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vladislav Yakovlev', 18)}}的其他基金
Facilitating remote chemical sensing with random Raman lasing
利用随机拉曼激光促进远程化学传感
- 批准号:
1509268 - 财政年份:2015
- 资助金额:
$ 71.06万 - 项目类别:
Standard Grant
Shedding new light on cell-matrix interactions: instrumentation development for non-invasive, real-time microscopic elasticity imaging
揭示细胞-基质相互作用的新线索:非侵入性实时显微弹性成像仪器开发
- 批准号:
1455671 - 财政年份:2015
- 资助金额:
$ 71.06万 - 项目类别:
Continuing Grant
Collaborative research: Disorder-induced high sensitivity Raman sensor
合作研究:无序引起的高灵敏度拉曼传感器
- 批准号:
1250360 - 财政年份:2012
- 资助金额:
$ 71.06万 - 项目类别:
Continuing Grant
Collaborative Research in Biophotonics: Towards high-resolution, label-free molecular imaging in deep tissue via stimulated Raman excitation and ultrasound detection
生物光子学合作研究:通过受激拉曼激发和超声检测实现深层组织的高分辨率、无标记分子成像
- 批准号:
1250363 - 财政年份:2012
- 资助金额:
$ 71.06万 - 项目类别:
Continuing Grant
Real-time, background-free resonance Raman microscopy FOR live-cell imaging
用于活细胞成像的实时、无背景共振拉曼显微镜
- 批准号:
1250361 - 财政年份:2012
- 资助金额:
$ 71.06万 - 项目类别:
Continuing Grant
Collaborative Research in Biophotonics: Towards high-resolution, label-free molecular imaging in deep tissue via stimulated Raman excitation and ultrasound detection
生物光子学合作研究:通过受激拉曼激发和超声检测实现深层组织的高分辨率、无标记分子成像
- 批准号:
1066562 - 财政年份:2011
- 资助金额:
$ 71.06万 - 项目类别:
Continuing Grant
Real-time, background-free resonance Raman microscopy FOR live-cell imaging
用于活细胞成像的实时、无背景共振拉曼显微镜
- 批准号:
0964225 - 财政年份:2010
- 资助金额:
$ 71.06万 - 项目类别:
Continuing Grant
Collaborative research: Disorder-induced high sensitivity Raman sensor
合作研究:无序引起的高灵敏度拉曼传感器
- 批准号:
0925950 - 财政年份:2009
- 资助金额:
$ 71.06万 - 项目类别:
Continuing Grant
CAREER: Frontiers of nonlinear optics: interdisciplinary approach to research and education
职业:非线性光学的前沿:跨学科的研究和教育方法
- 批准号:
9984225 - 财政年份:2000
- 资助金额:
$ 71.06万 - 项目类别:
Standard Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Development of tangible user interface using ultrasonic microfluidic manipulation platform
使用超声波微流体操纵平台开发有形用户界面
- 批准号:
23K16916 - 财政年份:2023
- 资助金额:
$ 71.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
SBIR Phase II: A high throughput microfluidic platform to accelerate biomanufacturing transitions in biologics development
SBIR II 期:一个高通量微流控平台,可加速生物制剂开发中的生物制造转型
- 批准号:
2309447 - 财政年份:2023
- 资助金额:
$ 71.06万 - 项目类别:
Cooperative Agreement
Development of flat-shape contact-angle sensor to realize sophisticated microfluidic devices
开发平面接触角传感器以实现复杂的微流体装置
- 批准号:
23K03959 - 财政年份:2023
- 资助金额:
$ 71.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SBIR Phase I: Advanced microfluidic systems enabling development of novel circulating tumor cell diagnostics
SBIR 第一阶段:先进的微流体系统能够开发新型循环肿瘤细胞诊断
- 批准号:
2234009 - 财政年份:2023
- 资助金额:
$ 71.06万 - 项目类别:
Standard Grant
Developing 3D brain circuits on-a-chip for in vitro study of human cortico-striatal circuitry development and connectivity
开发片上 3D 大脑回路,用于人类皮质纹状体回路发育和连接的体外研究
- 批准号:
10741965 - 财政年份:2023
- 资助金额:
$ 71.06万 - 项目类别:
Development of a 3D neurovascular unit for in vitro modeling of subarachnoid hemorrhage and screening therapies
开发用于蛛网膜下腔出血体外建模和筛选治疗的 3D 神经血管单元
- 批准号:
10722387 - 财政年份:2023
- 资助金额:
$ 71.06万 - 项目类别:
Development of A Novel Nanoparticle Biosensor for Rapid, Point-of-Care Sepsis Diagnosis and Risk Assessment
开发新型纳米颗粒生物传感器,用于快速护理点脓毒症诊断和风险评估
- 批准号:
10602155 - 财政年份:2023
- 资助金额:
$ 71.06万 - 项目类别:
Organizing and Reorganizing Human Testis Development In Vitro
体外组织和重组人类睾丸发育
- 批准号:
10817412 - 财政年份:2023
- 资助金额:
$ 71.06万 - 项目类别:
Development of a Collagen-based 3D Bioprinted Microfluidic Platform for Vascular Tissue Engineering and Disease Modeling
开发基于胶原蛋白的 3D 生物打印微流体平台,用于血管组织工程和疾病建模
- 批准号:
10837289 - 财政年份:2023
- 资助金额:
$ 71.06万 - 项目类别: