DMREF: Biologically Inspired Optimized Materials And Technologies Transformed by Evolutionary Rules (BIOMATTER)
DMREF:通过进化规则转变的受生物启发的优化材料和技术 (BIOMATTER)
基本信息
- 批准号:1533985
- 负责人:
- 金额:$ 150万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYMaterials that satisfy society's increasing demand for technological innovation and that provide solutions to major global challenges of the 21st century in the fields of energy efficiency, resource management, technology development, human health, and world security are frequently required to simultaneously exhibit multiple functions with superior performance. Through the course of natural evolution, a plethora of organisms have conceived material solutions that show exemplary performance characteristics across multiple property classes, including mechanics, optics, actuation and chemistry. These organisms thus provide an advantageous starting point for studying the role of morphology, morphogenesis, and material composition on emerging material properties. The project will explore the causalities between hierarchical material architectures, composition and morphogenesis, and the emerging functionalities in a set of exemplary biological systems. This will enable the identification of a generalized set of rules for guiding the design and fabrication of multifunctional 21st century materials. TECHNICAL SUMMARYThis research is inspired by the vision that an understanding of the material solutions and design criteria used by Nature's finest multitasking artists in combination with novel analytical and computational materials evolution tools can provide insight into functional synergies and trade-offs in multifunctional materials and result in revolutionary biomimetic material platforms. The research team proposes to study the causalities between hierarchical material architectures, composition, and morphogenesis and the emerging properties in a set of exemplary biological systems by analytical and computational analysis of the multi-faceted material parameter interactions underlying true multifunctionality. Building on knowledge about design paradigms prevalent in biological multifunctional materials, analytical algorithms, computational routines, and virtual material design environments will be conceived that will allow the characterization of the phase space of possible material solutions as a function of user-prescribed performance criteria. This will permit the team to identify a generalized set of rules for guiding the design and fabrication of multifunctional new materials. The particular emphasis is on identifying synergies and trade-offs between mechanical functionalities, optical properties, actuation behavior, fluidics, and surface-chemistry induced effects. Based on this set of design rules, the PIs will fabricate material prototypes using state-of-the-art additive manufacturing, self-assembly, and microfabrication strategies. A detailed characterization of the performance of these prototypes and comparison to the parent biological system(s) will enable evaluation of the validity and prediction capabilities of the design rules and allow for their refinement in an iterative process. In summary, the PIs propose to tackle the challenges of multifunctional material design using a feedback oriented "evolutionary research algorithm" with focus on the realization of dynamic multifunctional materials capable of fast autonomous or controlled functional morphing stimulated by external influences or user input.
满足社会对技术创新日益增长的需求,并为21世纪能源效率、资源管理、技术发展、人类健康和世界安全等领域的重大全球挑战提供解决方案的材料,往往需要同时展示具有卓越性能的多种功能。在自然进化的过程中,大量的生物已经构思出了材料解决方案,这些解决方案在多个属性类别(包括力学、光学、驱动和化学)中表现出卓越的性能特征。因此,这些生物为研究形态、形态发生和材料成分对新兴材料性能的作用提供了有利的起点。该项目将探索分层材料结构、组成和形态发生之间的因果关系,以及一系列示范性生物系统中新兴功能之间的因果关系。这将有助于确定一套通用规则,指导21世纪多功能材料的设计和制造。本研究的灵感来自于这样一种愿景:理解自然界最优秀的多任务艺术家使用的材料解决方案和设计标准,结合新颖的分析和计算材料进化工具,可以深入了解多功能材料的功能协同作用和权衡,并产生革命性的仿生材料平台。研究小组建议通过对真正多功能性的多方面材料参数相互作用的分析和计算分析,研究分层材料结构、组成和形态发生与一组示范性生物系统中新出现的特性之间的因果关系。基于在生物多功能材料、分析算法、计算例程和虚拟材料设计环境中流行的设计范式的知识,将设想这将允许将可能的材料解决方案的相空间表征为用户规定的性能标准的函数。这将使团队能够确定一套通用的规则来指导多功能新材料的设计和制造。特别强调的是确定机械功能、光学特性、驱动行为、流体和表面化学诱导效应之间的协同作用和权衡。基于这组设计规则,pi将使用最先进的增材制造、自组装和微制造策略制造材料原型。对这些原型的性能进行详细描述,并与母体生物系统进行比较,将能够评估设计规则的有效性和预测能力,并允许在迭代过程中对其进行改进。综上所述,pi建议使用以反馈为导向的“进化研究算法”来解决多功能材料设计的挑战,重点是实现能够在外部影响或用户输入的刺激下快速自主或控制功能变形的动态多功能材料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katia Bertoldi其他文献
Triggering of transition waves by the collision of solitons or breathers in bistable mechanical metamaterials
双稳态机械超材料中孤子或呼吸器碰撞触发过渡波
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Vincent Tournat;Apostolos Paliovaios;Vassos Achilleos;Georgios Theocharis;Hiromi Yasuda;Hang Shu;Weijian Jiao;Jordan Raney;Katia Bertoldi - 通讯作者:
Katia Bertoldi
Flexible mechanical metamaterials
柔性机械超材料
- DOI:
10.1038/natrevmats.2017.66 - 发表时间:
2017-10-17 - 期刊:
- 影响因子:86.200
- 作者:
Katia Bertoldi;Vincenzo Vitelli;Johan Christensen;Martin van Hecke - 通讯作者:
Martin van Hecke
Katia Bertoldi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katia Bertoldi', 18)}}的其他基金
Collaborative Research: Programming Non-Linear Waves in Compliant Mechanical Metamaterials
合作研究:在顺应机械超材料中编程非线性波
- 批准号:
2041440 - 财政年份:2021
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
DMREF: Hydrogel-actuated cellular soft robotic materials with programmable mechanical properties
DMREF:具有可编程机械性能的水凝胶驱动的细胞软机器人材料
- 批准号:
1922321 - 财政年份:2019
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
EFRI NewLAW: Topological Mechanical Metamaterials Science
EFRI NewLAW:拓扑机械超材料科学
- 批准号:
1741685 - 财政年份:2017
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
CAREER: BuckliOrigami: Soft, Active and Foldable Structures Through Instabilities and Large Deformation
职业:BuckliOrigami:通过不稳定和大变形实现柔软、活动和可折叠的结构
- 批准号:
1149456 - 财政年份:2012
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
相似海外基金
(DISC) Demountable, Resilient, and Sustainable Construction Technology for Next- Generation Biologically Inspired Buildings
(DISC) 下一代仿生建筑的可拆卸、弹性和可持续建筑技术
- 批准号:
EP/Z000998/1 - 财政年份:2024
- 资助金额:
$ 150万 - 项目类别:
Fellowship
A biologically-inspired, interactive digital device to introduce K12 students to computational neuroscience
一种受生物学启发的交互式数字设备,可向 K12 学生介绍计算神经科学
- 批准号:
10706026 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Analysis of a Hydrogen Powered Train Performance using Inverse Simulation and Biologically Inspired Optimization Techniques
使用逆向仿真和仿生优化技术分析氢动力列车性能
- 批准号:
2907952 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Studentship
RET Site: Biologically Inspired Computing Models, Systems, and Applications
RET 站点:仿生计算模型、系统和应用
- 批准号:
2302070 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
CIF: Small: Learning, Optimization & Analysis for Biologically Inspired Community Networks
CIF:小型:学习、优化
- 批准号:
2311653 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
CAREER: Towards Biologically Inspired Lifelong Learning with Multimodal Association
职业生涯:通过多模式关联迈向受生物启发的终身学习
- 批准号:
2325863 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
Biologically inspired knee prosthesis
仿生膝关节假体
- 批准号:
RGPIN-2018-04022 - 财政年份:2022
- 资助金额:
$ 150万 - 项目类别:
Discovery Grants Program - Individual
Advancing DNA sequence analysis algorithms using biologically inspired and mathematical sound analysis at the University of Tokyo
东京大学利用生物学启发和数学声音分析推进 DNA 序列分析算法
- 批准号:
577723-2022 - 财政年份:2022
- 资助金额:
$ 150万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Biologically Inspired Robotics: Intelligent Systems for Trustworthy Human-Robot Co-learning and Adaptation
仿生机器人:可信赖的人机协同学习和适应的智能系统
- 批准号:
RGPIN-2019-05223 - 财政年份:2022
- 资助金额:
$ 150万 - 项目类别:
Discovery Grants Program - Individual
Adaptive Action Representation for Biologically Inspired Robot Learning
仿生机器人学习的自适应动作表示
- 批准号:
577720-2022 - 财政年份:2022
- 资助金额:
$ 150万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements