DMREF: Collaborative Research: Design and Discovery of Multimetallic Hetergeneous Catalysts for a Future Biorefining Industry
DMREF:合作研究:未来生物精炼行业多金属多相催化剂的设计和发现
基本信息
- 批准号:1534269
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
#1534260 / #1534269Heyden, Andreas / Bond, Jesse Q.The proposal utilizes statistical analysis to estimate uncertainties in both experimental data and theoretical calculations relating to catalytic hydrodeoxygenation of succinic acid (SUCC HDO) - an important reaction in the refining of biomass-derived chemicals to commercially valuable products. The experimental and computational methods employed - combined with statistical error analysis - provide a more accurate and powerful approach for identifying improved catalytic materials than possible by either experiments or theory alone. The approach is applicable to a broad range of catalytic applications, and could provide a blueprint for a new approach to the discovery and design of catalytic materials. The results of the study will be made available to the catalysis community via a website and software tool.Specifically, the project involves preparation of well-defined and well-dispersed bimetallic clusters of tin (Sn) adsorbed on ruthenium (Ru), platinum (Pt) or rhodium (Rh) deposited on amorphous silica or carbon supports. The catalysts will be characterized in detail with respect to structure, composition, and surface acidity, and then evaluated in the SUCC HDO reaction. A multiscale strategy will be used for the computations based on DFT methods and techniques developed in the investigators' laboratory aimed at reducing uncertainties in the estimation of free energies. Uncertainties in both the experimental and computational analyses will be subjected to Bayesian statistical analysis. Refinements to both the experimental and computational methods will be made to minimize the uncertainties and obtain meaningful comparisons between theory and experiment. The methodology employed in the study can potentially guide materials selection and catalyst design for many applications beyond the specific catalysts and reaction demonstrated here. Rigorous standards are set for both the experimental and computational work, that when combined with statistical analysis, provide confidence heretofore lacking in the certainty with which new catalytic materials can be predicted. The selected reaction is in biomass processing and not only demonstrates application of the methods to complicated systems, but suggests potential use of the methods in both aqueous and gas-phase reactions important to renewable resources and energy sustainability.
#1534260/#1534269 Heyden,Andreas/Bond,Jesse Q。该提案利用统计分析来估计与琥珀酸催化加氢脱氧(Succ HDO)有关的实验数据和理论计算中的不确定性,该催化加氢脱氧是将生物质衍生化学品精制成具有商业价值的产品的重要反应。所采用的实验和计算方法--结合统计误差分析--为识别改进的催化材料提供了一种比单纯通过实验或理论更准确和更强大的方法。该方法适用于广泛的催化应用,并可为发现和设计催化材料的新方法提供蓝图。这项研究的结果将通过网站和软件工具提供给催化界。具体地说,该项目涉及制备定义明确且分散良好的锡(Sn)双金属簇合物,它们吸附在沉积在无定形二氧化硅或碳载体上的Ru(Ru)、Ptt或Rh(Rh)上。对催化剂的结构、组成和表面酸性进行了详细的表征,然后在成功的HDO反应中进行了评价。将采用多尺度策略,根据研究人员实验室开发的密度泛函方法和技术进行计算,目的是减少自由能估计中的不确定性。实验和计算分析中的不确定性都将接受贝叶斯统计分析。将对实验和计算方法进行改进,以最大限度地减少不确定性,并在理论和实验之间进行有意义的比较。研究中采用的方法可能会指导材料的选择和催化剂的设计,在这里展示的特定催化剂和反应之外的许多应用。实验和计算工作都设定了严格的标准,当与统计分析相结合时,提供了迄今为止缺乏的预测新催化材料的确定性的信心。选定的反应用于生物质加工,不仅展示了这些方法在复杂系统中的应用,而且表明这些方法在水相和气相反应中的潜在用途,这些方法对可再生资源和能源可持续发展非常重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jesse Bond其他文献
Jesse Bond的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jesse Bond', 18)}}的其他基金
Collaborative Research: Understanding and manipulating the solvent microenvironment for selective, catalytic amination of renewable oxygenates
合作研究:了解和操纵溶剂微环境,用于可再生含氧化合物的选择性催化胺化
- 批准号:
1804843 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: SusChEM: Phase-specific catalysis combined with reactive distillation for the selective production of butadiene from y-valerolactone
合作研究:SusChEM:相特异性催化与反应蒸馏相结合,用于从γ-戊内酯选择性生产丁二烯
- 批准号:
1605114 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: SusChEM: Development of Governing Mechanistic and Kinetic Models for the Selective Oxidative Cleavage of Levulinic Acid Over Supported Vanadium Oxides
职业:SusChEM:开发在负载的氧化钒上选择性氧化裂解乙酰丙酸的控制机制和动力学模型
- 批准号:
1454346 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Rational design of bifunctional catalysts for the conversion of Ievulinic acid to gamma-valerolactone
合作研究:合理设计乙酰丙酸转化为γ-戊内酯的双功能催化剂
- 批准号:
1159739 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
- 批准号:
2325392 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
- 批准号:
2323715 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2323667 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
- 批准号:
2323719 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323727 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant














{{item.name}}会员




