Collaborative Research: Decision Model for Patient-Specific Motion Management in Radiation Therapy Planning
协作研究:放射治疗计划中患者特定运动管理的决策模型
基本信息
- 批准号:1536407
- 负责人:
- 金额:$ 18.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A significant challenge in lung cancer radiation therapy (RT) is respiration-induced tumor motion, which hinders sufficient delivery of curative doses to target volumes. Although modern tumor motion management strategies for positron emission tomography/computed tomography (PET/CT)-guided RT are becoming more available, those techniques have yet to be fully incorporated into clinical practice. This is mainly because not every patient will benefit from a costly and lengthy motion-managed PET/CT scan due to high intra-patient and inter-patient variability of respiratory patterns. The objective of this project is to bridge the knowledge gap of which motion management method would best benefit an individual patient. This project will develop a new decision-making paradigm, in which machine learning techniques will be developed to characterize respiratory motion patterns and combine them with other diagnostic factors to predict the benefits from motion management methods for each individual patient. A decision-analytic cohort model will be developed to compare and evaluate the cost-effectiveness of the new decision paradigm and the traditional population-based radiation oncology practice of motion management based on our existing database of respiratory traces from more than 3,000 patients. While specifically applied to decisions surrounding respiratory motion management, the developed decision paradigm can be generalized and applied to other real life decision analysis problems.This award supports fundamental research in data mining/machine learning and decision analysis, which will provide needed knowledge for the development of tools for effective management of patient-specific tumor motion. The modeling effort in this project will 1) establish a new mathematical foundation for supervised multivariate sparse variable selection and prediction to discover complicated multivariate relationships among high-dimensional variables; 2) construct a general integrated validation framework to rigorously test the cost-effectiveness of patient-specific health interventions. The new multivariate sparse variable selection and prediction approach can be used to build an interpretable prediction model, handle high-dimensional data with a low sample size, avoid under-shrinkage effect, and incorporate structured group selection. The cost-effectiveness analysis framework integrates the outcome of prediction model, the treatment effect and survival outcome model. This modeling aims to quantitatively estimate long-term cancer survival outcomes from improvement in patient-specific planning of radiation dosing by selective motion control.
肺癌放射治疗(RT)的重大挑战是呼吸诱导的肿瘤运动,这阻碍了足够的治疗剂量到靶量。尽管现代肿瘤运动管理策略用于正电子发射断层扫描/计算机断层扫描(PET/CT)引导的RT越来越多,但这些技术尚未完全纳入临床实践中。这主要是因为,由于呼吸模式的患者内和患者间的变异性高,并非每个患者都会受益于昂贵且冗长的运动管理的PET/CT扫描。该项目的目的是弥合知识差距哪种运动管理方法将最能使人受益。该项目将开发一个新的决策范式,其中将开发机器学习技术来表征呼吸运动模式并将其与其他诊断因素结合在一起,以预测每个患者的运动管理方法的好处。将基于我们现有的3,000多名患者的现有呼吸道痕迹数据库,将开发出一种决策分析队列模型,以比较和评估新决策范式的成本效益和基于人群的辐射肿瘤学实践。虽然专门用于围绕呼吸道运动管理的决策,但开发的决策范式可以被推广并应用于其他现实生活决策分析问题。该奖项支持数据挖掘/机器学习和决策分析中的基本研究,这将为有效管理患者特异性肿瘤运动的工具提供所需的知识。该项目中的建模工作将为1)建立一个新的数学基础,用于监督多元稀疏变量选择和预测,以发现高维变量之间复杂的多元关系; 2)构建一个一般的综合验证框架,以严格测试患者特定健康干预措施的成本效益。新的多元稀疏变量选择和预测方法可用于构建一个可解释的预测模型,处理具有较低样本量的高维数据,避免造成不足的效果,并结合结构化的组选择。成本效益分析框架整合了预测模型的结果,治疗效果和生存结果模型。该建模旨在定量估计长期的癌症生存结果,从选择性运动控制的患者特定辐射剂量计划中的改善。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wanpracha Chaovalitwongse其他文献
Wanpracha Chaovalitwongse的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wanpracha Chaovalitwongse', 18)}}的其他基金
Collaborative Research: Decision Model for Patient-Specific Motion Management in Radiation Therapy Planning
协作研究:放射治疗计划中患者特定运动管理的决策模型
- 批准号:
1742032 - 财政年份:2017
- 资助金额:
$ 18.48万 - 项目类别:
Standard Grant
Network Optimization of Functional Connectivity in Neuroimaging for Differential Diagnoses of Brain Diseases
神经影像功能连接的网络优化用于脑部疾病的鉴别诊断
- 批准号:
1742031 - 财政年份:2017
- 资助金额:
$ 18.48万 - 项目类别:
Standard Grant
NCS-FO: Collaborative Research: Relationship of Cortical Field Anatomy to Network Vulnerability and Behavior
NCS-FO:协作研究:皮质场解剖与网络漏洞和行为的关系
- 批准号:
1734913 - 财政年份:2017
- 资助金额:
$ 18.48万 - 项目类别:
Standard Grant
Network Optimization of Functional Connectivity in Neuroimaging for Differential Diagnoses of Brain Diseases
神经影像功能连接的网络优化用于脑部疾病的鉴别诊断
- 批准号:
1333841 - 财政年份:2013
- 资助金额:
$ 18.48万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Scalable Kinship Inference in Wild Populations Across Years and Generations
III:媒介:合作研究:跨年、跨代野生种群的可扩展亲缘关系推断
- 批准号:
1231132 - 财政年份:2011
- 资助金额:
$ 18.48万 - 项目类别:
Continuing Grant
III: Medium: Collaborative Research: Scalable Kinship Inference in Wild Populations Across Years and Generations
III:媒介:合作研究:跨年、跨代野生种群的可扩展亲缘关系推断
- 批准号:
1064752 - 财政年份:2011
- 资助金额:
$ 18.48万 - 项目类别:
Continuing Grant
CAREER: Novel Optimization Methods for Cooperative Data Mining with Healthcare and Biotechnology Applications
职业:医疗保健和生物技术应用中协作数据挖掘的新颖优化方法
- 批准号:
1219639 - 财政年份:2011
- 资助金额:
$ 18.48万 - 项目类别:
Continuing Grant
RI:Small:Collaborative Proposal: Computational Framework of Robust Intelligent System for Mental State Identification and Human Performance Prediction with Biofeedback
RI:Small:协作提案:利用生物反馈进行精神状态识别和人类表现预测的鲁棒智能系统计算框架
- 批准号:
1219638 - 财政年份:2011
- 资助金额:
$ 18.48万 - 项目类别:
Continuing Grant
RI:Small:Collaborative Proposal: Computational Framework of Robust Intelligent System for Mental State Identification and Human Performance Prediction with Biofeedback
RI:Small:协作提案:利用生物反馈进行精神状态识别和人类表现预测的鲁棒智能系统计算框架
- 批准号:
0916580 - 财政年份:2009
- 资助金额:
$ 18.48万 - 项目类别:
Continuing Grant
Collaborative Research: SEI: Computational Methods for Kinship Reconstruction
合作研究:SEI:亲属关系重建的计算方法
- 批准号:
0611998 - 财政年份:2006
- 资助金额:
$ 18.48万 - 项目类别:
Standard Grant
相似国自然基金
DNMT1在胶质母细胞瘤干细胞分化启动与命运决定中的调控作用研究
- 批准号:32300478
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Tbx2决定小鼠耳蜗内毛细胞命运机制的研究
- 批准号:32371054
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
METTL14介导m6A甲基化修饰在中华鳖性逆转中的功能研究
- 批准号:32302992
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
猕猴桃Y染色体特异编码基因AcYFT调控雄株早花的分子机理
- 批准号:32302519
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
问题性手机使用的人工智能干预研究——基于自我决定理论和压力应对理论的双轨机制
- 批准号:82304258
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: DRMS:Group cognition, stress arousal, and environment feedbacks in decision making and adaptation under uncertainty
合作研究:DRMS:不确定性下决策和适应中的群体认知、压力唤醒和环境反馈
- 批准号:
2343727 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
Continuing Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
- 批准号:
2309022 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
Standard Grant
Collaborative Research: DRMS:Group cognition, stress arousal, and environment feedbacks in decision making and adaptation under uncertainty
合作研究:DRMS:不确定性下决策和适应中的群体认知、压力唤醒和环境反馈
- 批准号:
2343728 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
Continuing Grant
Research on a multidisciplinary collaborative decision-making system to be considered together with people with neurological incurable diseases.
研究与神经系统疑难杂症患者一起考虑的多学科协作决策系统。
- 批准号:
23K09938 - 财政年份:2023
- 资助金额:
$ 18.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)