Collaborative Research: RI: Medium: RUI: Automated Decision Making for Open Multiagent Systems
协作研究:RI:中:RUI:开放多智能体系统的自动决策
基本信息
- 批准号:2312658
- 负责人:
- 金额:$ 42.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Various types of uncertainties complicate decision making in real-world contexts. In addition to imperfect sensing, there is added uncertainty in shared contexts due to the unknown actions of others and the dynamism brought about by these agents. Open systems are those real-world contexts whose composition changes over time due to either internal or external events. This research investigates how decision-makers (i.e., agents) may best act under uncertainty in open systems. Three forms of openness will be explored. The first is when the agents enter or leave the system over time. The second occurs when the tasks that must be completed by agents change over time. The third occurs when the agents’ capabilities change from learning new roles or skills. All three forms of openness, though prevalent in the real world and found in examples such as human organizations, disaster response, and smart transportation, have not been studied previously with respect to how they complicate decision making and their important role in enabling applications of artificial intelligence. Researchers from the Universities of Georgia and Nebraska-Lincoln, and from Oberlin College, will collaborate on this project. A new evaluation initiative leading into the creation of a competition involving use-inspired domains exhibiting various types of openness will be launched to spur broader interest. An innovative lesson module based on principles of creative thinking that brings the challenges of openness and how we may address them to undergraduate and graduate students will allow this project’s outcomes to be integrated into the classroom.The project takes the approach of investigating frameworks for modeling the various types of openness and realizing methods for acting optimally in the context of these frameworks. Specifically, the researchers will continue their investigations into scaling automated planning and reinforcement learning to open systems involving many agents with a novel focus on understanding the impact of task and frame openness. The ultimate goal is to combine representations of all three forms of openness and study whether this makes the decision-making problem fundamentally harder. Synergies between the planning and learning techniques under each type of openness will be identified and exploited. When combined with the advances of the past couple of decades in decision making under uncertainty due to sensor noise, these methods will represent a transformative step in translating principled planning and learning to the true complexities of real-world contexts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
各种类型的不确定性使现实世界中的决策变得复杂。除了不完美的感知之外,由于其他人的未知行为以及这些代理带来的活力,共享环境中还增加了不确定性。开放系统是那些现实世界的环境,其组成会因内部或外部事件而随着时间的推移而变化。这项研究调查了决策者(即代理人)在开放系统的不确定性下如何最好地采取行动。将探索三种开放形式。第一个是代理随着时间的推移进入或离开系统。当代理必须完成的任务随着时间的推移而发生变化时,就会发生第二种情况。 当代理的能力因学习新角色或技能而发生变化时,就会发生第三种情况。 尽管这三种形式的开放性在现实世界中都很普遍,并且在人类组织、灾难响应和智能交通等例子中都有发现,但之前尚未研究过它们如何使决策变得复杂以及它们在支持人工智能应用方面的重要作用。来自佐治亚大学、内布拉斯加大学林肯分校以及欧柏林学院的研究人员将合作开展该项目。将启动一项新的评估举措,以发起一项涉及展示各种类型开放性的使用启发领域的竞赛,以激发更广泛的兴趣。基于创造性思维原则的创新课程模块,为本科生和研究生带来了开放性的挑战,以及我们如何应对这些挑战,这将使该项目的成果融入课堂。该项目采用研究框架的方法来建模各种类型的开放性,并实现在这些框架的背景下采取最佳行动的方法。具体来说,研究人员将继续研究将自动化规划和强化学习扩展到涉及许多智能体的开放系统,并重点关注理解任务和框架开放性的影响。最终目标是将所有三种开放形式的表现结合起来,并研究这是否会使决策问题从根本上变得更加困难。将确定并利用每种开放类型下的规划和学习技术之间的协同作用。结合过去几十年在传感器噪声带来的不确定性下决策方面取得的进步,这些方法将代表着将原则性规划和学习转化为现实世界环境的真正复杂性的变革性步骤。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leen-Kiat Soh其他文献
Perceptual cue-guided adaptive image downscaling for enhanced semantic segmentation on large document images
- DOI:
10.1007/s10032-023-00454-7 - 发表时间:
2023-09-28 - 期刊:
- 影响因子:2.500
- 作者:
Chulwoo Pack;Leen-Kiat Soh;Elizabeth Lorang - 通讯作者:
Elizabeth Lorang
Techniques for Computing Fitness of Use (FoU) for Time Series Datasets with Applications in the Geospatial Domain
- DOI:
10.1007/s10707-007-0025-0 - 发表时间:
2007-05-05 - 期刊:
- 影响因子:2.600
- 作者:
Lei Fu;Leen-Kiat Soh;Ashok Samal - 通讯作者:
Ashok Samal
Integrated Introspective Case-Based Reasoning for Intelligent Tutoring Systems
- DOI:
- 发表时间:
2007-07 - 期刊:
- 影响因子:0
- 作者:
Leen-Kiat Soh - 通讯作者:
Leen-Kiat Soh
Machine learning methods for isolating indigenous language catalog descriptions
- DOI:
10.1007/s00146-025-02223-y - 发表时间:
2025-02-24 - 期刊:
- 影响因子:4.700
- 作者:
Yi Liu;Carrie Heitman;Leen-Kiat Soh;Peter Whiteley - 通讯作者:
Peter Whiteley
Variables influencing change blindness in construction safety
影响建筑安全中变化盲视的变量
- DOI:
10.1016/j.ssci.2024.106761 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:5.400
- 作者:
Tomay Solomon;Leen-Kiat Soh;Michael D. Dodd;Behzad Esmaeili - 通讯作者:
Behzad Esmaeili
Leen-Kiat Soh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leen-Kiat Soh', 18)}}的其他基金
RI: Small: Collaborative Research: Scalable Decentralized Planning in Open Multiagent Environments
RI:小型:协作研究:开放多智能体环境中的可扩展去中心化规划
- 批准号:
1910156 - 财政年份:2019
- 资助金额:
$ 42.49万 - 项目类别:
Standard Grant
Adapt, Implement and Research at Nebraska: A Statewide Implementation Study of a Researcher-Practitioner Partnership for K-8 Computer Science Education
内布拉斯加州的适应、实施和研究:K-8 计算机科学教育研究人员与实践者合作伙伴关系的全州实施研究
- 批准号:
1837476 - 财政年份:2018
- 资助金额:
$ 42.49万 - 项目类别:
Standard Grant
Computational Creativity to Improve Computer Science Education for CS and non-CS Undergraduates
计算创造力改善计算机科学和非计算机科学本科生的计算机科学教育
- 批准号:
1431874 - 财政年份:2014
- 资助金额:
$ 42.49万 - 项目类别:
Standard Grant
Integrating Computational and Creative Thinking (IC2Think)
整合计算和创造性思维(IC2Think)
- 批准号:
1122956 - 财政年份:2011
- 资助金额:
$ 42.49万 - 项目类别:
Standard Grant
CPATH CDP: Renaissance Computing
CPATH CDP:文艺复兴计算
- 批准号:
0829647 - 财政年份:2008
- 资助金额:
$ 42.49万 - 项目类别:
Standard Grant
iLOG: Embedding and Validating Empirical Usage Intelligence in Learning Objects
iLOG:在学习对象中嵌入和验证经验使用智能
- 批准号:
0632642 - 财政年份:2007
- 资助金额:
$ 42.49万 - 项目类别:
Continuing Grant
SGER: Affinity Learning Authoring Tools
SGER:亲和力学习创作工具
- 批准号:
0513405 - 财政年份:2005
- 资助金额:
$ 42.49万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 42.49万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 42.49万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
- 批准号:
2313131 - 财政年份:2023
- 资助金额:
$ 42.49万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313151 - 财政年份:2023
- 资助金额:
$ 42.49万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 42.49万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
- 批准号:
2345528 - 财政年份:2023
- 资助金额:
$ 42.49万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
- 批准号:
2232298 - 财政年份:2023
- 资助金额:
$ 42.49万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
- 批准号:
2232055 - 财政年份:2023
- 资助金额:
$ 42.49万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313149 - 财政年份:2023
- 资助金额:
$ 42.49万 - 项目类别:
Continuing Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312374 - 财政年份:2023
- 资助金额:
$ 42.49万 - 项目类别:
Standard Grant














{{item.name}}会员




