A Prognostic Modeling Methodology for Multistream Degradation-based Signals
基于多流退化的信号的预测建模方法
基本信息
- 批准号:1536555
- 负责人:
- 金额:$ 31.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-12-01 至 2019-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
High-valued engineering assets used in the manufacturing and service sectors are increasingly being instrumented with hundreds of sensors that are used for condition monitoring and predicting remaining lifetime, i.e., prognostics. The underlying idea of prognostics is that sensor data often contain unique fault-based features that can be utilized for prediction. Today, multiple sensors are increasingly being used to monitor different aspects of a degradation process in a single machine, thus, it is important to leverage the combined information embedded in these sensors. However, most of the existing prognostic models developed to date focus on single-sensor applications and do not account for any data quality issues. This award supports fundamental research to provide prognostic models for multistream sensor signals where data observations may be sparse and/or missing; an aspect that has consistently challenged the implementation of prognostics in real-world applications. This research will enable numerous industries in the manufacturing and service sectors to increase equipment availability, prevent catastrophic failures, and reduce maintenance costs. Research findings will also be used to advance engineering education by incorporating the findings of this work in graduate coursework. Almost all approaches available for degradation modeling are based on a key assumption that is rarely satisfied in reality; the quality of sensor data is high and states are observed on a continuous basis. This project will bridge the gap between theory and practice in the area of prognostics by relaxing the simplifying assumptions that have traditionally been the basis for developing prognostic models. This will be accomplished by incorporating parsimonious estimation methods and functional data analysis to model degradation signals with missing and sparse observations. Specifically, functional Principal Component Analysis will be used to model simultaneous variations of multivariate signal recorded by different sensors. Principal Components Analysis through Conditional Expectation will be used to address the challenges arising from the missing observations. Isotonic regression methods will be used to ensure monotonicity of the resulting models, which will be key in estimating remaining lifetime.
制造业和服务业中使用的高价值工程资产越来越多地配备有数百个传感器,用于状态监测和预测剩余寿命,即,弹道学。 故障学的基本思想是传感器数据通常包含可用于预测的独特的基于故障的特征。 如今,多个传感器越来越多地用于监测单个机器中降解过程的不同方面,因此,利用嵌入在这些传感器中的组合信息非常重要。 然而,迄今为止开发的大多数现有预测模型都集中在单传感器应用上,并且没有考虑任何数据质量问题。 该奖项支持基础研究,为数据观测可能稀疏和/或缺失的多流传感器信号提供预测模型;这一方面一直在挑战现实世界应用中的预测学。 这项研究将使制造业和服务业的许多行业能够提高设备可用性,防止灾难性故障,并降低维护成本。 研究结果也将用于推进工程教育,将这项工作的结果纳入研究生课程。几乎所有的退化建模方法都是基于一个在现实中很少得到满足的关键假设;传感器数据的质量很高,状态是连续观察的。该项目将通过放宽传统上作为发展预测模型基础的简化假设,弥合预测学领域理论与实践之间的差距。 这将通过结合简约估计方法和功能数据分析来实现,以模拟具有缺失和稀疏观测的退化信号。 具体而言,功能主成分分析将用于对不同传感器记录的多变量信号的同时变化进行建模。通过条件期望进行的主成分分析将用于解决缺失观测值带来的挑战。 将使用保序回归方法确保所得模型的单调性,这将是估计剩余寿命的关键。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nagi Gebraeel其他文献
A reliability-and-cost-based framework to optimize maintenance planning and diverse-skilled technician routing for geographically distributed systems
基于可靠性和成本的框架,用于优化地理分布式系统的维护计划和不同技能的技术人员路由
- DOI:
10.1016/j.ress.2022.108652 - 发表时间:
2022 - 期刊:
- 影响因子:8.1
- 作者:
Guojin Si;Tangbin Xia;Nagi Gebraeel;Dong Wang;Ershun Pan;Lifeng Xi - 通讯作者:
Lifeng Xi
Holistic opportunistic maintenance scheduling and routing for offshore wind farms
- DOI:
10.1016/j.rser.2024.114991 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Guojin Si;Tangbin Xia;Nagi Gebraeel;Dong Wang;Ershun Pan;Lifeng Xi - 通讯作者:
Lifeng Xi
A maintenance scheduling and non-full vessel routing strategy for offshore wind farms considering day-ahead environment interval forecasting
考虑日前环境区间预测的海上风电场维护调度与非满载船舶路径规划策略
- DOI:
10.1016/j.oceaneng.2025.120440 - 发表时间:
2025-03-30 - 期刊:
- 影响因子:5.500
- 作者:
Guojin Si;Tangbin Xia;Kaigan Zhang;Nagi Gebraeel;Murat Yildirim;Lifeng Xi - 通讯作者:
Lifeng Xi
Maintenance scheduling and vessel routing for offshore wind farms with multiple ports considering day-ahead wind-wave predictions
- DOI:
10.1016/j.apenergy.2024.124915 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:
- 作者:
Guojin Si;Tangbin Xia;Dong Wang;Nagi Gebraeel;Ershun Pan;Lifeng Xi - 通讯作者:
Lifeng Xi
Nagi Gebraeel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nagi Gebraeel', 18)}}的其他基金
SBIR Phase I: A Blockchain-Driven, Distributed Memory, Computational Platform for Industrial Analytics
SBIR 第一阶段:区块链驱动的分布式内存工业分析计算平台
- 批准号:
2112099 - 财政年份:2022
- 资助金额:
$ 31.99万 - 项目类别:
Standard Grant
GOALI: Adaptive Degradation-Based Prognosis with Application to Vehicular Electrical Systems
GOALI:基于自适应退化的预测在车辆电气系统中的应用
- 批准号:
1200639 - 财政年份:2012
- 资助金额:
$ 31.99万 - 项目类别:
Standard Grant
Collaborative Research: Adaptive Maintenance Planning Based on Evolving Residual Life Distributions
协作研究:基于演化剩余寿命分布的自适应维护规划
- 批准号:
0856192 - 财政年份:2009
- 资助金额:
$ 31.99万 - 项目类别:
Standard Grant
CAREER: Real-Time Degradation-Based Prognostic Methodology for Improving Reliability and Maintenance Logistics
职业:基于实时退化的预测方法,用于提高可靠性和维护物流
- 批准号:
0738647 - 财政年份:2007
- 资助金额:
$ 31.99万 - 项目类别:
Standard Grant
CAREER: Real-Time Degradation-Based Prognostic Methodology for Improving Reliability and Maintenance Logistics
职业:基于实时退化的预测方法,用于提高可靠性和维护物流
- 批准号:
0643410 - 财政年份:2007
- 资助金额:
$ 31.99万 - 项目类别:
Standard Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
A Graph-based Methodology for Modeling the Nucleation of Weak Electrolytes
基于图形的弱电解质成核建模方法
- 批准号:
2317787 - 财政年份:2023
- 资助金额:
$ 31.99万 - 项目类别:
Continuing Grant
Graphical Modeling of High-Dimensional Functional Data: Separability Structures and Unified Methodology under General Observational Designs
高维函数数据的图形建模:一般观测设计下的可分离结构和统一方法
- 批准号:
2310943 - 财政年份:2023
- 资助金额:
$ 31.99万 - 项目类别:
Standard Grant
A methodology for quantitative failure risk analysis using physical modeling and Bayesian network
使用物理建模和贝叶斯网络进行定量故障风险分析的方法
- 批准号:
23K13522 - 财政年份:2023
- 资助金额:
$ 31.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Advanced Feature Semantics Modeling Methodology and Technology Development in a Smart Product and Process Engineering Regime
智能产品和过程工程体系中的高级特征语义建模方法和技术开发
- 批准号:
RGPIN-2020-03956 - 财政年份:2022
- 资助金额:
$ 31.99万 - 项目类别:
Discovery Grants Program - Individual
Statistical Learning and Modeling: Methodology and Algorithm
统计学习和建模:方法和算法
- 批准号:
RGPIN-2019-05917 - 财政年份:2022
- 资助金额:
$ 31.99万 - 项目类别:
Discovery Grants Program - Individual
Statistical Learning and Modeling: Methodology and Algorithm
统计学习和建模:方法和算法
- 批准号:
RGPIN-2019-05917 - 财政年份:2021
- 资助金额:
$ 31.99万 - 项目类别:
Discovery Grants Program - Individual
Methodology Development and Implementation for Microbiome Sequencing Data: Hierarchical Modeling on Clustered Taxa Counts with Repeated Measures
微生物组测序数据的方法开发和实施:重复测量的聚类分类群计数的分层建模
- 批准号:
RGPIN-2017-06672 - 财政年份:2021
- 资助金额:
$ 31.99万 - 项目类别:
Discovery Grants Program - Individual
Mathematical and Statistical Modeling and Methodology for Topics in Diffusion Tensor Imaging
扩散张量成像主题的数学和统计建模及方法
- 批准号:
2111251 - 财政年份:2021
- 资助金额:
$ 31.99万 - 项目类别:
Standard Grant
Statistical modeling, inference and methodology in microbial metagenomics data analysis and computational molecular evolution
微生物宏基因组数据分析和计算分子进化的统计建模、推理和方法
- 批准号:
RGPIN-2017-05108 - 财政年份:2021
- 资助金额:
$ 31.99万 - 项目类别:
Discovery Grants Program - Individual
Methodology for the Next Generation of Building Thermal Modeling and Simulation
下一代建筑热建模和仿真方法
- 批准号:
RGPIN-2016-04176 - 财政年份:2021
- 资助金额:
$ 31.99万 - 项目类别:
Discovery Grants Program - Individual