GOALI: Adaptive Degradation-Based Prognosis with Application to Vehicular Electrical Systems

GOALI:基于自适应退化的预测在车辆电气系统中的应用

基本信息

  • 批准号:
    1200639
  • 负责人:
  • 金额:
    $ 37.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

The research objective of this Grant Opportunity for Academic Liaison with Industry (GOALI) award is to use real-time performance-/condition-based sensor signals to characterize component-to-component degradation interactions in multi-component systems, and use this characterization to improve sensor-based prognostics of complex engineering systems. The general approach used for modeling component interdependencies within a given system has traditionally focused on investigating the effects that a component's failure has on the remaining surviving components. In contrast, this project's approach addresses this challenge at a much more fundamental level by focusing on the effects of gradual and partial degradation of system components rather than the effects of their failures. This will be achieved through a combined stochastic and statistical modeling framework, which will be used to develop adaptive prognostic models for components with interdependent degradation processes. Deliverables for this project include a software with prognostic algorithms, documentation of research results, validation on industrial platform, and engineering student education. The success of this project will have a direct impact on improving human safety, and reducing maintenance and warranty costs of the American automotive industry. Specifically, this GOALI project is conducted in close collaboration with General Motors. It aims to apply the prognostic methods on key components of the Vehicular Electric Power Generation and Storage (EPGS) system. Findings of this research will also benefit many other industrial sectors, including the airline industry, the power generation industry, manufacturing sector, and domains of the service sector. The research agenda will serve as the foundation for the doctoral dissertations of two Ph.D. students, providing them with a rich training experience that combines theoretical and industrial work as well as internship opportunities. Research findings will be incorporated in a Prognostics graduate course. Dissemination will include conference presentations to the academic communities as well as industrial seminars and workshops.
该学术与工业联络机会 (GOALI) 奖项的研究目标是使用实时性能/基于条件的传感器信号来表征多组件系统中组件之间的退化相互作用,并使用此表征来改进复杂工程系统的基于传感器的预测。 用于对给定系统内的组件相互依赖性进行建模的一般方法传统上侧重于研究组件故障对其余幸存组件的影响。 相比之下,该项目的方法通过关注系统组件逐渐和部分退化的影响而不是其故障的影响,从更根本的层面解决了这一挑战。 这将通过随机和统计相结合的建模框架来实现,该框架将用于为具有相互依赖的退化过程的组件开发自适应预测模型。 该项目的交付成果包括具有预测算法的软件、研究结果文档、工业平台验证以及工程学生教育。该项目的成功将对提高人类安全、降低美国汽车行业的维护和保修成本产生直接影响。 具体来说,这个 GOALI 项目是与通用汽车密切合作进行的。 它旨在将预测方法应用于车辆发电和存储(EPGS)系统的关键部件。 这项研究的结果还将惠及许多其他工业部门,包括航空业、发电业、制造业和服务业领域。 研究议程将作为两位博士论文的基础。学生,为他们提供丰富的理论与工业工作相结合的培训经验以及实习机会。 研究结果将纳入预测学研究生课程。 传播将包括向学术界的会议演讲以及工业研讨会和讲习班。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nagi Gebraeel其他文献

A reliability-and-cost-based framework to optimize maintenance planning and diverse-skilled technician routing for geographically distributed systems
基于可靠性和成本的框架,用于优化地理分布式系统的维护计划和不同技能的技术人员路由
  • DOI:
    10.1016/j.ress.2022.108652
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.1
  • 作者:
    Guojin Si;Tangbin Xia;Nagi Gebraeel;Dong Wang;Ershun Pan;Lifeng Xi
  • 通讯作者:
    Lifeng Xi
Holistic opportunistic maintenance scheduling and routing for offshore wind farms
  • DOI:
    10.1016/j.rser.2024.114991
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Guojin Si;Tangbin Xia;Nagi Gebraeel;Dong Wang;Ershun Pan;Lifeng Xi
  • 通讯作者:
    Lifeng Xi
A maintenance scheduling and non-full vessel routing strategy for offshore wind farms considering day-ahead environment interval forecasting
考虑日前环境区间预测的海上风电场维护调度与非满载船舶路径规划策略
  • DOI:
    10.1016/j.oceaneng.2025.120440
  • 发表时间:
    2025-03-30
  • 期刊:
  • 影响因子:
    5.500
  • 作者:
    Guojin Si;Tangbin Xia;Kaigan Zhang;Nagi Gebraeel;Murat Yildirim;Lifeng Xi
  • 通讯作者:
    Lifeng Xi
Maintenance scheduling and vessel routing for offshore wind farms with multiple ports considering day-ahead wind-wave predictions
  • DOI:
    10.1016/j.apenergy.2024.124915
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Guojin Si;Tangbin Xia;Dong Wang;Nagi Gebraeel;Ershun Pan;Lifeng Xi
  • 通讯作者:
    Lifeng Xi

Nagi Gebraeel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nagi Gebraeel', 18)}}的其他基金

SBIR Phase I: A Blockchain-Driven, Distributed Memory, Computational Platform for Industrial Analytics
SBIR 第一阶段:区块链驱动的分布式内存工业分析计算平台
  • 批准号:
    2112099
  • 财政年份:
    2022
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Standard Grant
A Prognostic Modeling Methodology for Multistream Degradation-based Signals
基于多流退化的信号的预测建模方法
  • 批准号:
    1536555
  • 财政年份:
    2015
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Adaptive Maintenance Planning Based on Evolving Residual Life Distributions
协作研究:基于演化剩余寿命分布的自适应维护规划
  • 批准号:
    0856192
  • 财政年份:
    2009
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Standard Grant
CAREER: Real-Time Degradation-Based Prognostic Methodology for Improving Reliability and Maintenance Logistics
职业:基于实时退化的预测方法,用于提高可靠性和维护物流
  • 批准号:
    0738647
  • 财政年份:
    2007
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Standard Grant
CAREER: Real-Time Degradation-Based Prognostic Methodology for Improving Reliability and Maintenance Logistics
职业:基于实时退化的预测方法,用于提高可靠性和维护物流
  • 批准号:
    0643410
  • 财政年份:
    2007
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Standard Grant

相似海外基金

Personalised Adaptive Medicine
个性化适应性医学
  • 批准号:
    10100435
  • 财政年份:
    2024
  • 资助金额:
    $ 37.97万
  • 项目类别:
    EU-Funded
VIPAuto: Robust and Adaptive Visual Perception for Automated Vehicles in Complex Dynamic Scenes
VIPAuto:复杂动态场景中自动驾驶车辆的鲁棒自适应视觉感知
  • 批准号:
    EP/Y015878/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Fellowship
Adaptive Artificial Receptors for Biomimetic Functions
仿生功能的自适应人工受体
  • 批准号:
    MR/X023303/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Fellowship
Efficient and unbiased estimation in adaptive platform trials
自适应平台试验中的高效且公正的估计
  • 批准号:
    MR/X030261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Research Grant
Directed and adaptive evolution of photosynthetic systems
光合系统的定向和适应性进化
  • 批准号:
    MR/Y011635/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Fellowship
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316612
  • 财政年份:
    2024
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316615
  • 财政年份:
    2024
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
  • 批准号:
    2327452
  • 财政年份:
    2024
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了